Search code examples
deep-learningkeraskeras-layer

How to apply a different dense layer to each row of a matrix in keras


The output of my previous layer has the shape (None, 30, 600). I want to multiply each row of this matrix by a different (600, 600) matrix or equivalently multiply this matrix by a 3D weight matrix. This can be achieved by applying a different dense layer to each row. I tried using a TimeDistributed Wrapper but that applies the same dense layer to each row. I have also tried using a lambda layer like so:

Lambda(lambda x: tf.stack(x, axis=1))(
    Lambda(lambda x: [Dense(600)(each) for each in tf.unstack(x, axis=1)])(prev_layer_output)
)

This seemed to solve the problem and I was able to train the model correctly. But I noticed that model.summary() doesn't recognize these dense layers and neither are they reflected in the count of total Trainable params. Also, I am unable to restore their weights when I load the model and hence the whole training is wasted. How do I fix this problem? How do I apply a different dense layer to each row of a matrix?


Solution

  • You can use several layers instead of wrapping everything into a single Lambda layer.

    x = Input((30, 600))
    unstacked = Lambda(lambda x: K.tf.unstack(x, axis=1))(x)
    dense_outputs = [Dense(600)(x) for x in unstacked]
    merged = Lambda(lambda x: K.stack(x, axis=1))(dense_outputs)
    model = Model(x, merged)
    

    Now you can see 30 Dense(600) layers in model.summary().

    __________________________________________________________________________________________________
    Layer (type)                    Output Shape         Param #     Connected to
    ==================================================================================================
    input_1 (InputLayer)            (None, 30, 600)      0
    __________________________________________________________________________________________________
    lambda_1 (Lambda)               [(None, 600), (None, 0           input_1[0][0]
    __________________________________________________________________________________________________
    dense_1 (Dense)                 (None, 600)          360600      lambda_1[0][0]
    __________________________________________________________________________________________________
    dense_2 (Dense)                 (None, 600)          360600      lambda_1[0][1]
    __________________________________________________________________________________________________
    dense_3 (Dense)                 (None, 600)          360600      lambda_1[0][2]
    __________________________________________________________________________________________________
    dense_4 (Dense)                 (None, 600)          360600      lambda_1[0][3]
    __________________________________________________________________________________________________
    dense_5 (Dense)                 (None, 600)          360600      lambda_1[0][4]
    __________________________________________________________________________________________________
    dense_6 (Dense)                 (None, 600)          360600      lambda_1[0][5]
    __________________________________________________________________________________________________
    dense_7 (Dense)                 (None, 600)          360600      lambda_1[0][6]
    __________________________________________________________________________________________________
    dense_8 (Dense)                 (None, 600)          360600      lambda_1[0][7]
    __________________________________________________________________________________________________
    dense_9 (Dense)                 (None, 600)          360600      lambda_1[0][8]
    __________________________________________________________________________________________________
    dense_10 (Dense)                (None, 600)          360600      lambda_1[0][9]
    __________________________________________________________________________________________________
    dense_11 (Dense)                (None, 600)          360600      lambda_1[0][10]
    __________________________________________________________________________________________________
    dense_12 (Dense)                (None, 600)          360600      lambda_1[0][11]
    __________________________________________________________________________________________________
    dense_13 (Dense)                (None, 600)          360600      lambda_1[0][12]
    __________________________________________________________________________________________________
    dense_14 (Dense)                (None, 600)          360600      lambda_1[0][13]
    __________________________________________________________________________________________________
    dense_15 (Dense)                (None, 600)          360600      lambda_1[0][14]
    __________________________________________________________________________________________________
    dense_16 (Dense)                (None, 600)          360600      lambda_1[0][15]
    __________________________________________________________________________________________________
    dense_17 (Dense)                (None, 600)          360600      lambda_1[0][16]
    __________________________________________________________________________________________________
    dense_18 (Dense)                (None, 600)          360600      lambda_1[0][17]
    __________________________________________________________________________________________________
    dense_19 (Dense)                (None, 600)          360600      lambda_1[0][18]
    __________________________________________________________________________________________________
    dense_20 (Dense)                (None, 600)          360600      lambda_1[0][19]
    __________________________________________________________________________________________________
    dense_21 (Dense)                (None, 600)          360600      lambda_1[0][20]
    __________________________________________________________________________________________________
    dense_22 (Dense)                (None, 600)          360600      lambda_1[0][21]
    __________________________________________________________________________________________________
    dense_23 (Dense)                (None, 600)          360600      lambda_1[0][22]
    __________________________________________________________________________________________________
    dense_24 (Dense)                (None, 600)          360600      lambda_1[0][23]
    __________________________________________________________________________________________________
    dense_25 (Dense)                (None, 600)          360600      lambda_1[0][24]
    __________________________________________________________________________________________________
    dense_26 (Dense)                (None, 600)          360600      lambda_1[0][25]
    __________________________________________________________________________________________________
    dense_27 (Dense)                (None, 600)          360600      lambda_1[0][26]
    __________________________________________________________________________________________________
    dense_28 (Dense)                (None, 600)          360600      lambda_1[0][27]
    __________________________________________________________________________________________________
    dense_29 (Dense)                (None, 600)          360600      lambda_1[0][28]
    __________________________________________________________________________________________________
    dense_30 (Dense)                (None, 600)          360600      lambda_1[0][29]
    __________________________________________________________________________________________________
    lambda_2 (Lambda)               (None, 30, 600)      0           dense_1[0][0]
                                                                     dense_2[0][0]
                                                                     dense_3[0][0]
                                                                     dense_4[0][0]
                                                                     dense_5[0][0]
                                                                     dense_6[0][0]
                                                                     dense_7[0][0]
                                                                     dense_8[0][0]
                                                                     dense_9[0][0]
                                                                     dense_10[0][0]
                                                                     dense_11[0][0]
                                                                     dense_12[0][0]
                                                                     dense_13[0][0]
                                                                     dense_14[0][0]
                                                                     dense_15[0][0]
                                                                     dense_16[0][0]
                                                                     dense_17[0][0]
                                                                     dense_18[0][0]
                                                                     dense_19[0][0]
                                                                     dense_20[0][0]
                                                                     dense_21[0][0]
                                                                     dense_22[0][0]
                                                                     dense_23[0][0]
                                                                     dense_24[0][0]
                                                                     dense_25[0][0]
                                                                     dense_26[0][0]
                                                                     dense_27[0][0]
                                                                     dense_28[0][0]
                                                                     dense_29[0][0]
                                                                     dense_30[0][0]
    ==================================================================================================
    Total params: 10,818,000
    Trainable params: 10,818,000
    Non-trainable params: 0
    __________________________________________________________________________________________________
    

    EDIT: To verify that this model is learning:

    model.compile(loss='mse', optimizer='adam')
    w0 = model.get_weights()
    model.fit(np.random.rand(100,30,600), np.random.rand(100,30,600), epochs=10)
    

    You should be able to see that the loss is decreasing:

    Epoch 1/10
    100/100 [==============================] - 1s 15ms/step - loss: 0.4725
    Epoch 2/10
    100/100 [==============================] - 0s 1ms/step - loss: 0.2211
    Epoch 3/10
    100/100 [==============================] - 0s 1ms/step - loss: 0.2405
    Epoch 4/10
    100/100 [==============================] - 0s 1ms/step - loss: 0.2013
    Epoch 5/10
    100/100 [==============================] - 0s 1ms/step - loss: 0.1771
    Epoch 6/10
    100/100 [==============================] - 0s 1ms/step - loss: 0.1676
    Epoch 7/10
    100/100 [==============================] - 0s 1ms/step - loss: 0.1568
    Epoch 8/10
    100/100 [==============================] - 0s 1ms/step - loss: 0.1473
    Epoch 9/10
    100/100 [==============================] - 0s 1ms/step - loss: 0.1400
    Epoch 10/10
    100/100 [==============================] - 0s 1ms/step - loss: 0.1343
    

    Also, you can verify that the weights indeed get updated by comparing the values before and after model fitting:

    w0 = model.get_weights()
    model.fit(np.random.rand(100,30,600), np.random.rand(100,30,600), epochs=10)
    
    w1 = model.get_weights()
    print(not any(np.allclose(x0, x1) for x0, x1 in zip(w0, w1)))
    # => True