I am trying to create or find a function that calculates the distance and angle between two points, the idea is that I can have two data.frames with x, y coordinates as follows:
From <- data.frame(x = c(0.5,1, 4, 0), y = c(1.5,1, 1, 0))
To <- data.frame(x =c(3, 0, 5, 1), y =c(3, 0, 6, 1))
For now, I've managed to develop the distance part using Pythagoras:
distance <- function(from, to){
D <- sqrt((abs(from[,1]-to[,1])^2) + (abs(from[,2]-to[,2])^2))
return(D)
}
Which works fine:
distance(from = From, to = To)
[1] 2.915476 1.414214 5.099020 1.414214
but I can't figure out how to get the angle part.
I tried adapting the second solution of this question
angle <- function(x,y){
dot.prod <- x%*%y
norm.x <- norm(x,type="2")
norm.y <- norm(y,type="2")
theta <- acos(dot.prod / (norm.x * norm.y))
as.numeric(theta)
}
x <- as.matrix(c(From[,1],To[,1]))
y <- as.matrix(c(From[,2],To[,2]))
angle(t(x),y)
But I am clearly making a mess of it
I would like having the angle part of the function added to my first function, where I get both the distance and angle between the from and to dataframes
By angle between two points, I am assuming you mean angle between two vectors defined by endpoints (and assuming the start is the origin).
The example you used was designed around only a single pair of points, with the t
ranspose used only on this principle. It is however robust enough to work in more than 2 dimensions.
Your function should be vectorised as your distance function is, as it is expecting a number of pairs of points (and we are only considering 2 dimensional points).
angle <- function(from,to){
dot.prods <- from$x*to$x + from$y*to$y
norms.x <- distance(from = `[<-`(from,,,0), to = from)
norms.y <- distance(from = `[<-`(to,,,0), to = to)
thetas <- acos(dot.prods / (norms.x * norms.y))
as.numeric(thetas)
}
angle(from=From,to=To)
[1] 0.4636476 NaN 0.6310794 NaN
The NaN
s are due to you having zero-length vectors.