I am trying to drop all the columns containing k1 and p5 and have a new DataFrame without those columns but I get an error.
df_r1 = df.filter(regex=("k1\s")) #filter all k1 columns
df_r2 = df.filter(regex=("p5\s")) #filter all p5 columns
df_dropped_new = df.drop((df_r1,df_r2),axis = 1)
and the above line gets me the following error
DataFrame' objects are mutable, thus they cannot be hashed
Furthermore, I am performing 2 more filters to my dataFrame. The first one is dropping columns containing "objects" and the second one is dropping columns that have std=0.
You can use:
df = pd.DataFrame({'A':list('abcdef'),
'p5 sd':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'k1 s':[1,3,5,7,1,0],
'V':[5,5,5,5,5,5],
'k1 d':list('aaabbb')})
print (df)
A C V k1 d k1 s p5 sd
0 a 7 5 a 1 4
1 b 8 5 a 3 5
2 c 9 5 a 5 4
3 d 4 5 b 7 5
4 e 2 5 b 1 5
5 f 3 5 b 0 4
First check if std
is 0
, but it remove all not numeric columns, so add them by reindex
with fill_value=True
:
m1 = df.std().eq(0).reindex(df.columns, fill_value=True)
Then check if contains columns names pattern:
m2 = m1.index.str.contains("p5\s|k1\s")
print (m1)
A True
C False
V True
k1 d True
k1 s False
p5 sd False
dtype: bool
print (m2)
[False False False True True True]
Chain both masks together by or
(|
):
m = m1 | m2
print (m)
A True
C False
V True
k1 d True
k1 s True
p5 sd True
dtype: bool
Last filter, but is necessary invert mask by ~
:
df = df.loc[:, ~m]
print (df)
C
0 7
1 8
2 9
3 4
4 2
5 3
EDIT:
Mask
for remove not numeric columns is not necessary, because std
automatically removing non numeric columns:
m0 = df.columns.isin(df.select_dtypes(include=['object']))
m1 = df.std().eq(0).reindex(df.columns, fill_value=True)
m2 = m1.index.str.contains("p5\s|k1\s")
m = m1 | m2 | m0
print (m)
A True
C False
V True
k1 d True
k1 s True
p5 sd True
dtype: bool
df = df.loc[:, ~m]
print (df)
C
0 7
1 8
2 9
3 4
4 2
5 3