I have an "unstructured" list that looks like this:
info = [
'Joe Schmoe',
'W / M / 64',
'Richard Johnson',
'OFFICER',
'W / M /48',
'Adrian Stevens',
'? / ? / 27'
]
Unstructured in that the list consists of sets of:
In the latter case, Officer=False
and in the former, Officer=True
. The Demographic Info strings represent Race / Gender / Age
, with NaN
s represented by literal question marks. Here is where I'd like to get to:
res = {
'Joe Schmoe': {
'race': 'W',
'gender': 'M',
'age': 64,
'officer': False
},
'Richard Johnson': {
'race': 'W',
'gender': 'M',
'age': 48,
'officer': True
},
'Adrian Stevens': {
'race': 'NaN',
'gender': 'NaN',
'age': 27,
'officer': False
}
}
Right now I've built two functions to do this. The first is below and handles the Demographic Info strings. (I'm fine with this one; just putting it here for reference.)
import re
def fix_demographic(info):
# W / M / ?? --> W / M / NaN
# ?/M/? --> NaN / M / NaN
# Keep as str NaN rather than np.nan for now
race, gender, age = re.split('\s*/\s*', re.sub('\?+', 'NaN', info))
return race, gender, age
The second function deconstructs the list and throws its values into different places in a dictionary result:
demographic = re.compile(r'(\w+|\?+)\s*\/\s*(\w+|\?+)\s*\/\s*(\w+|\?+)')
def parse_victim_info(info: list):
res = defaultdict(dict)
for i in info:
if not demographic.fullmatch(i) and i.lower() != 'officer':
# We have a name
previous = 'name'
name = i
if i.lower() == 'officer':
res[name]['officer'] = True
previous = 'officer'
if demographic.fullmatch(i):
# We have demographic info; did "OFFICER" come before it?
if previous == 'name':
res[name]['officer'] = False
race, gender, age = fix_demographic(i)
res[name]['race'] = race
res[name]['gender'] = gender
res[name]['age'] = int(age) if age.isnumeric() else age
previous = None
return res
>>> parse_victim_info(info)
defaultdict(dict,
{'Adrian Stevens': {'age': 27,
'gender': 'NaN',
'officer': False,
'race': 'NaN'},
'Richard Johnson': {'age': 48,
'gender': 'M',
'officer': True,
# ... ...
This second function feels way too verbose & tedious for what it's doing.
Is there a better way about this that is able to more smartly remember the categorization of the last value seen in the iteration?
This sort of thing lends itself very nicely to a generator:
def find_triplets(data):
data = iter(data)
while True:
name = next(data)
demo = next(data)
officer = demo == 'OFFICER'
if officer:
demo = next(data)
yield name, officer, demo
info = [
'Joe Schmoe',
'W / M / 64',
'Lillian Schmoe',
'W / F / 60',
'Richard Johnson',
'OFFICER',
'W / M /48',
'Adrian Stevens',
'? / ? / 27'
]
for x in find_triplets(info):
print(x)
('Joe Schmoe', False, 'W / M / 64')
('Lillian Schmoe', False, 'W / F / 60')
('Richard Johnson', True, 'W / M /48')
('Adrian Stevens', False, '? / ? / 27')
dict
:import re
def fix_demographic(info):
# W / M / ?? --> W / M / NaN
# ?/M/? --> NaN / M / NaN
# Keep as str NaN rather than np.nan for now
race, gender, age = re.split('\s*/\s*', re.sub('\?+', 'NaN', info))
return dict(race=race, gender=gender, age=age)
data_dict = {name: dict(officer=officer, **fix_demographic(demo))
for name, officer, demo in find_triplets(info)}
print(data_dict)
{
'Joe Schmoe': {'officer': False, 'race': 'W', 'gender': 'M', 'age': '64'},
'Lillian Schmoe': {'officer': False, 'race': 'W', 'gender': 'F', 'age': '60'},
'Richard Johnson': {'officer': True, 'race': 'W', 'gender': 'M', 'age': '48'},
'Adrian Stevens': {'officer': False, 'race': 'NaN', 'gender': 'NaN', 'age': '27'}
}