I have a pandas dataframe with multiple indexes and columns
I want to slice this dataframe based on some column names, but sometimes the given column names are not in the dataframe. Pandas raises a warning to use .reindex
instead of .loc
But I found strange results. To clarify, let us load the dataFrame
import pandas as pd
d2 = pd.read_csv('https://docs.google.com/uc?id=1Ufx6pvnSC6zQdTAj05ObmV027fA4-Mr3&export=download', index_col=[0,1])
d2.head(3)
the result is:
..............................................
: : : ind475 : ind476 : ind456 :
:..........:......:........:........:........:
: Country : Year : : : :
: Argentin : 1966 : 6.15 : 7.77 : NaN :
: : 1967 : 8.33 : 9.81 : NaN :
: : 1968 : 9.19 : 10.2 : NaN :
:..........:......:........:........:........:
If we slice using existing columns, then no problem:
indicators_list = ['ind475', 'ind456']
idx = pd.IndexSlice
d3 = d2.loc[idx[:,:], idx[indicators_list]]
d3.dropna(axis=0, how='all').dropna(axis=1, how='all').shape
Out>> (10006,2)
But if we slice with one or more missing columns, an Error is raised, but it works
indicators_list = ['ind475', 'ind179']
d4 = d2.loc[idx[:,:], idx[indicators_list]]
d4.dropna(axis=0, how='all').dropna(axis=1, how='all').shape
Out>> (2672, 1) with a red Warning
FutureWarning:
Passing list-likes to .loc or [] with any missing label will raise
KeyError in the future, you can use .reindex() as an alternative.
See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike
return self._getitem_nested_tuple(tup)
I tried using reindex as suggested by the warning and as shown in this post, but the result is none!!
indicators_list = ['ind475', 'ind179']
d5 = d2.reindex(columns=[indicators_list])
d5.dropna(axis=0, how='all').dropna(axis=1, how='all').shape
Out:>> (0, 0)
How can I slice and get the proper size without warnings or errors?
I believe you need filter columns names with isin
(and then if necessary remove NaN
s columns):
indicators_list = ['ind475', 'ind179']
print (df2.loc[:, df2.columns.isin(indicators_list)])
Or:
print (df2[df2.columns[df2.columns.isin(indicators_list)]])
If working with multiindex use get_level_values
:
print (df2.loc[:, df2.columns.get_level_values(0).isin(indicators_list)])