Is there a way to selectively hide one specific input or output cell in IPython notebook?
I could only find the below code to show / hide all input cells.
http://blog.nextgenetics.net/?e=102
But what if I only want to hide the first input cell of a notebook?
This is now built into nbconvert (as of 5.3.0) using tags.
Here's an example removing a specific cell from the output, using this notebook, which is also included at the end of this post. The example has three cells: a markdown cell, a code cell that will be hidden, and a code cell that will not be hidden.
remove_cell
tag to any cells you want to hide using the tag editor built into the notebook or JupyterLab (the specific name "remove_cell" doesn't matter)jupyter nbconvert nbconvert-example.ipynb --TagRemovePreprocessor.remove_cell_tags='{"remove_cell"}'
Any cells with the tag remove_cell
will be removed from the output.
In addition to entire cells, you can filter just inputs or just outputs:
TagRemovePreprocessor.remove_input_tags
TagRemovePreprocessor.remove_single_output_tags
TagRemovePreprocessor.remove_all_outputs_tags
Here's the full source for the notebook used in this example:
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here's an example of how to hide cells with nbconvert."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": [
"remove_cell"
]
},
"outputs": [],
"source": [
"# This cell is hidden\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>A</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" A\n",
"0 1\n",
"1 2"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame({\"A\": [1, 2]})"
]
}
],
"metadata": {
"celltoolbar": "Tags",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},