I am new to Spark/Scala. i do not know how to use spark dataset to filter columns like pandas.loc.
pandas code:
data_fact = pd.read_excel(path, sheetname=sheetname_factor)
//drop some columns which have too many null value
data_fact_v1=data_fact.loc[:,((data_fact>0).sum()>len(data_fact) *0.7)]
Your help is very much appreciated!
I would use a RDD for this because the API is more flexible. In the following code, I map each row to a list of tuple2 with the column name associated to 0 if the value of the field is null, 1 otherwise. Then I flatten everything and count the number of non null values per column with reduceByKey
. I finally drop the columns that do not match your requirements in the original dataframe.
var data = ...
val cols = data.columns
val total = data.count
val nullMap = data.rdd
.flatMap{row => cols.filter(col => row.getAs(col) == null).map(col => (col, 1) ) }
.reduceByKey(_+_)
.collectAsMap
for(col <- cols)
if(nullMap.getOrElse(col, 0).toDouble / total < 0.7)
data = data.drop(col)
Edit other method: to avoid flattening the data, you can use the aggregate function
def combine(map1 : Map[String, Int], map2 : Map[String, Int]) =
map1.keySet
.union(map2.keySet)
.map(k => (k, map1.getOrElse(k, 0)+map2.getOrElse(k, 0)))
.toMap
val nullMap = data.rdd.aggregate(Map[String, Int]())(
(map, row)=> combine(map, cols.filter(col => row.getAs(col) == null).map(col => (col, 1)).toMap),
combine)
And then the same
for(col <- cols)
if(nullMap.getOrElse(col, 0).toDouble / total >= 0.3)
data = data.drop(col)
Or
val valid_columns = cols
.filter(col => nullMap.getOrElse(col, 0).toDouble / total >= 0.3)
data = data.drop(valid_columns : _*)