Search code examples
pythonimage-processingmachine-learningkerasautoencoder

ValueError: Error when checking target: expected model_2 to have shape (None, 252, 252, 1) but got array with shape (300, 128, 128, 3)


hi I am building a image classifier for one-class classification in which i've used autoencoder while running this model I am getting this error by this line (autoencoder_model.fit) (ValueError: Error when checking target: expected model_2 to have shape (None, 252, 252, 1) but got array with shape (300, 128, 128, 3).)

num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')



labels[0:376]=0 
names = ['cats']


input_shape=img_data[0].shape



X_train, X_test = train_test_split(img_data, test_size=0.2, random_state=2)


inputTensor = Input(input_shape)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(inputTensor)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded_data = MaxPooling2D((2, 2), padding='same')(x)

encoder_model = Model(inputTensor,encoded_data)

# at this point the representation is (4, 4, 8) i.e. 128-dimensional
encoded_input = Input((4,4,8))
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded_input)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu',padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded_data = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

decoder_model = Model(encoded_input,decoded_data)

autoencoder_input = Input(input_shape)
encoded = encoder_model(autoencoder_input)
decoded = decoder_model(encoded)
autoencoder_model = Model(autoencoder_input, decoded)
autoencoder_model.compile(optimizer='adadelta', 
 `enter code here`loss='binary_crossentropy')


autoencoder_model.fit(X_train, X_train,
            epochs=50,
            batch_size=32,
            validation_data=(X_test, X_test),
            callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])

Solution

  • It's a simple incompatibility between the output shape of the decoder and the shape of your training data. (Target means output).

    I see you've got 2 MaxPoolings (dividing your image size by 4), and three upsamplings (multiplying the decoder's input by 8).

    The final output of the autoencoder is too big and doesn't match your data. You must simply work in the model to make the output shape match your training data.