I have a function to compute the finite difference of a 1d np.array and I want to extrapolate to a n-d array.
The function is like this:
def fpp_fourth_order_term(U):
"""Returns the second derivative of fourth order term without the interval multiplier."""
# U-slices
fm2 = values[ :-4]
fm1 = values[1:-3]
fc0 = values[2:-2]
fp1 = values[3:-1]
fp2 = values[4: ]
return -fm2 + 16*(fm1+fp1) - 30*fc0 - fp2
It is missing the 4th order multiplier (1/(12*h**2)
), but that is ok, because I will multiply when grouping the terms.
I would love to extend it as a N-dimensional. For that I would do the following changes:
def fpp_fourth_order_term(U, axis=0):
"""Returns the second derivative of fourth order term along an axis without the interval multiplier."""
# U-slices
But here is the issue
fm2 = values[ :-4]
fm1 = values[1:-3]
fc0 = values[2:-2]
fp1 = values[3:-1]
fp2 = values[4: ]
This works fine in 1D, if is 2D along first axis for example I would have to change for something like:
fm2 = values[:-4,:]
fm1 = values[1:-3,:]
fc0 = values[2:-2,:]
fp1 = values[3:-1,:]
fp2 = values[4:,:]
But along the second axis would be:
fm2 = values[:,:-4]
fm1 = values[:,1:-3]
fc0 = values[:,2:-2]
fp1 = values[:,3:-1]
fp2 = values[:,4:]
The same applies to 3d, but has 3 possibilities and goes on and on. The return always works if the neighbors are correctly set.
return -fm2 + 16*(fm1+fp1) - 30*fc0 - fp2
Of course axis
cannot be larger than len(U.shape)-1
(I call this the dimension, is there any way to extract instead this snippet?
How can I do a elegant and pythonic approach for this coding problem?
Is there a better way to do it?
PS: Regarding np.diff
and np.gradient
, those do not work since the first one is first order and the second one is second order, I'm doing a fourth order approximation. In fact soon I finish this problem I will also generalize the order. But yes, I want to be able to do in any axis as np.gradient
do.
A simple and effective solution is to use swapaxes
at the very beginning and end of your procedure:
import numpy as np
def f(values, axis=-1):
values = values.swapaxes(0, axis)
fm2 = values[ :-4]
fm1 = values[1:-3]
fc0 = values[2:-2]
fp1 = values[3:-1]
fp2 = values[4: ]
return (-fm2 + 16*(fm1+fp1) - 30*fc0 - fp2).swapaxes(0, axis)
a = (np.arange(4*7*8)**3).reshape(4,7,8)
res = f(a, axis=1)
print(res)
print(res.flags)
Output:
# [[[ 73728 78336 82944 87552 92160 96768 101376 105984]
# [110592 115200 119808 124416 129024 133632 138240 142848]
# [147456 152064 156672 161280 165888 170496 175104 179712]]
# [[331776 336384 340992 345600 350208 354816 359424 364032]
# [368640 373248 377856 382464 387072 391680 396288 400896]
# [405504 410112 414720 419328 423936 428544 433152 437760]]
# [[589824 594432 599040 603648 608256 612864 617472 622080]
# [626688 631296 635904 640512 645120 649728 654336 658944]
# [663552 668160 672768 677376 681984 686592 691200 695808]]
# [[847872 852480 857088 861696 866304 870912 875520 880128]
# [884736 889344 893952 898560 903168 907776 912384 916992]
# [921600 926208 930816 935424 940032 944640 949248 953856]]]
The result is even contiguous.
# C_CONTIGUOUS : True
# F_CONTIGUOUS : False
# OWNDATA : False
# WRITEABLE : True
# ALIGNED : True
# UPDATEIFCOPY : False