Search code examples
pythonpython-2.7scikit-learnxgboostlightgbm

Problems in LightGBM internals


Can't understand what's going on with LightGBM (Windows platform). Previously I had this algorithm really powerful, but now his performance is so bad.

For comparison (default parameters in each algorithm) LightGBM performs according to simple DIFF-metric = (actual - prediction):

  • CatBoostRegressor() - 18142884
  • XGBoostRegressor() - 20235110
  • GradientBoostingRegressor() - 20437130
  • LGBMRegressor() - 60296698 (version=2.0.5)

I was trying to find some better parameters with HyperOpt, but also without success

LGBM_SPACE = {
    'type': 'LGBM',
    'task': hp.choice('lgbm_task', ['train', 'prediction']),
    'boosting_type': hp.choice('lgbm_boosting_type', ['gbdt', 'dart']),
    'objective': hp.choice('lgbm_objective', ['regression']),
    'n_estimators': hp.choice('lgbm_n_estimators', range(10, 201, 5)),
    'learning_rate':  hp.uniform('lgbm_learning_rate', 0.05, 1.0),
    'num_leaves': hp.choice('lgbm_num_leaves', range(2, 7, 1)),
    'tree_learner': hp.choice('lgbm_tree_learner', ['serial', 'feature', 'data']),
    'metric': hp.choice('lgbm_metric', ['l1', 'l2', 'huber', 'fair']),
    'huber_delta': hp.uniform('lgbm_huber_delta', 0.0, 1.0),
    'fair_c': hp.uniform('lgbm_fair_c', 0.0, 1.0),
    'max_depth': hp.choice('lgbm_max_depth', range(3, 11)),
    'min_data_in_leaf': hp.choice('lgbm_min_data_in_leaf', range(0, 6, 1)),
    'min_sum_hessian_in_leaf': hp.loguniform('lgbm_min_sum_hessian_in_leaf', -16, 5),
    'feature_fraction': hp.uniform('lgbm_feature_fractionf', 0.0, 1.0),
    'feature_fraction_seed': hp.choice('lgbm_feature_fraction_seed', [12345]),
    'bagging_fraction': hp.uniform('lgbm_bagging_fraction', 0.0, 1.0),
    'bagging_freq': hp.choice('lgbm_bagging_freq', range(0, 16, 1)),
    'bagging_seed': hp.choice('lgbm_bagging_seed', [12345]),
    'min_gain_to_split': hp.uniform('lgbm_min_gain_to_split', 0.0, 1.0),
    'drop_rate': hp.uniform('lgbm_drop_rate', 0.0, 1.0),
    'skip_drop': hp.uniform('lgbm_skip_drop', 0.0, 1.0),
    'max_drop': hp.choice('lgbm_max_drop', [-1] + range(2, 51, 1)),
    'drop_seed': hp.choice('lgbm_uniform_drop', [12345]),
    'verbose': hp.choice('lgbm_verbose', [-1]),
    'num_threads': hp.choice('lgbm_threads', [2]), 
} 

The best result was just 450422301, that is super bad in comparing with above.

Example of using as all scikit-learn API:

model = LGBMRegressor()
model.fit(X, Y)
model.predict(XT)

Solution

  • Please try to use the latest code from master branch. There was an occurrence of inconsistent parameters in Scikit-learn API which was fixed: #1033.

    Or you could add to your alg_conf "min_child_weight": 1e-3, "min_child_samples": 20.