Running the below code:
import pandas as pd
import datetime
ticker_date = [('US',datetime.date.today()-datetime.timedelta(3)),
('US',datetime.date.today()-datetime.timedelta(2)),
('US',datetime.date.today()-datetime.timedelta(1)),
('EU',datetime.date.today()-datetime.timedelta(3)),
('EU',datetime.date.today()-datetime.timedelta(1))]
index_df = pd.MultiIndex.from_tuples(ticker_date)
example = pd.DataFrame([12.2,12.5,12.6,15.1,15],index_df,['value'])
Output:
I am looking for a method to reshape my output filling the missing data with the previous value:
I'd do it this way:
In [24]: idx = pd.MultiIndex.from_product((
example.index.get_level_values(0).unique(),
example.index.get_level_values(1).unique()))
In [25]: example = example.reindex(idx).ffill()
In [26]: example
Out[26]:
value
US 2017-12-10 12.2
2017-12-11 12.5
2017-12-12 12.6
EU 2017-12-10 15.1
2017-12-11 15.1
2017-12-12 15.0