I am using Kafka Spark Streaming along with cassandra. When I am running my java class using eclipse it works fine but when I build using maven and execute it on Spark Shell it is throwing below mentioned exception.
java.lang.NoClassDefFoundError: com/datastax/spark/connector/japi/rdd/CassandraTableScanJavaRDD
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.util.Utils$.classForName(Utils.scala:230)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:712)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: com.datastax.spark.connector.japi.rdd.CassandraTableScanJavaRDD
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
I have tried using maven jar plugin but it is not working. My pom.xml configuration is
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.edureka.capstone</groupId>
<artifactId>spark-cassandra-demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core_2.11 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.2.0</version>
<scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming_2.10 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>2.2.0</version>
<scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/com.datastax.spark/spark-cassandra-connector_2.11 -->
<dependency>
<groupId>com.datastax.spark</groupId>
<artifactId>spark-cassandra-connector_2.11</artifactId>
<version>2.0.5</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.datastax.spark/spark-cassandra-connector-java_2.10 -->
<dependency>
<groupId>com.datastax.spark</groupId>
<artifactId>spark-cassandra-connector-java_2.10</artifactId>
<version>1.6.0-M1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core -->
<dependency>
<groupId>com.datastax.cassandra</groupId>
<artifactId>cassandra-driver-core</artifactId>
<version>3.3.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-catalyst_2.10 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-catalyst_2.10</artifactId>
<version>2.2.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql_2.10 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>2.2.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.11</artifactId>
<version>1.6.2</version>
</dependency>
<dependency>
<groupId>com.twitter</groupId>
<artifactId>bijection-avro_2.10</artifactId>
<version>0.9.2</version>
</dependency>
</dependencies>
<build>
<resources>
<resource>
<directory>${basedir}/src/main/resources</directory>
</resource>
</resources>
<pluginManagement>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</pluginManagement>
</build>
</project>
You need to build "fat jar" with all dependencies included (for example, by using Maven Assembly plugin: example 1, example 2), or specify all additional dependencies as arguments to spark-shell
.
Update: Forgot to add that core Spark dependencies should be marked as provided
to avoid conflicts.