I want to fuse multiple date fields that contains NAs using piping in R. The data looks like:
dd <- data.frame(id=c("a","b","c","d"),
f1=as.Date(c(NA, "2012-03-24", NA,NA)),
f2=as.Date(c("2010-01-24", NA, NA,NA)),
f3=as.Date(c(NA, NA, "2014-11-22", NA)))
dd
id f1 f2 f3
1 a <NA> 2010-01-24 <NA>
2 b 2012-03-24 <NA> <NA>
3 c <NA> <NA> 2014-11-22
4 d <NA> <NA> <NA>
I know how to do it the R base way:
unlist(apply(dd[,c("f1","f2","f3")],1,na.omit))
f2 f1 f3
"2010-01-24" "2012-03-24" "2014-11-22"
So that is not the point of my question. I'm in the process of learning piping and dplyr so I want to pipe this function. I've tried:
library(dplyr)
dd %>% mutate(f=na.omit(c(f1,f2,f3)))
Error in mutate_impl(.data, dots) :
Column `f` must be length 4 (the number of rows) or one, not 3
It doesn't work because of the line with all NAs. Without this line, it would work:
dd[-4,] %>% mutate(f=na.omit(c(f1,f2,f3)))
id f1 f2 f3 f
1 a <NA> 2010-01-24 <NA> 2012-03-24
2 b 2012-03-24 <NA> <NA> 2010-01-24
3 c <NA> <NA> 2014-11-22 2014-11-22
Any idea how to do it properly?
BTW, my question is different from this and this as I want to use piping and because my field is a date field, I cannot use sum
with na.rm=T
.
Thanks
We can use coalesce
to create the new column,
library(dplyr)
dd %>%
transmute(newcol = coalesce(f1, f2, f3)) #%>%
#then `filter` the rows to remove the NA elements
#and `pull` as a `vector` (if needed)
#filter(!is.na(newcol)) %>%
#pull(newcol)
# newcol
#1 2010-01-24
#2 2012-03-24
#3 2014-11-22
#4 <NA>