I am trying to rotate a roll ( or cylinder) using Euler matrix. For that purpose I use the following function.
def roll( R, zi, zf, Euler):
# R is the radius of the cylinder
# t is the angle which is running from 0 to 2*pi
# zi is the lower z co-ordinate of cylinder
# zf is the upper z co-ordinate of cylinder
t = np.arange( 0, 2* np.pi + 0.1, 0.1)
z = np.array([zi, zf])
t, z = np.meshgrid(t, z)
p, q = t.shape
r = R* np.ones([p,q], float)
# polar co-ordinates to Cartesian co-ordinate
x, y, z = pol2cart(r,t,z)
# Euler rotation
rot0 = np.array([x[0,:], y[0,:], z[0,:]])
rot1 = np.array([x[1,:], y[1,:], z[1,:]])
# mult is the matrix multiplication
mat0 = mult( Euler, rot0)
mat1 = mult( Euler, rot1)
#
x[0,:] = mat0[0,:]
y[0,:] = mat0[1,:]
z[0,:] = mat0[2,:]
#
x[1,:] = mat1[0,:]
y[1,:] = mat1[1,:]
z[1,:] = mat1[2,:]
#
return x, y, z
the function works well when Euler rotation matrix is Euler = np.array([[1,0,0],[0,1,0],[0,0,1]])
and the inputs for function are x, y, z = roll(1, -2, 2, np.array([[1,0,0],[0,1,0],[0,0,1]]) )
. Using ax.plot_surface(x,y,z)
I got the following figure.
But when I try to rotate the object by Euler matrix Euler = np.array([[1,0,0],[0,1/np.sqrt(2),-1/np.sqrt(2)],[0,1/np.sqrt(2),1/np.sqrt(2)]])
i got the unexpected result.
Here the rotation is 45
degree which is correct but the shape of object is not proper.
You were almost there. A few things:
You are actually using cylindrical coordinates not spherical ones. I did not check if numpy has a cyl2cat
but this is also not really hard to write yourself:
def cyl2cat(r, theta, z):
return (r*np.cos(theta), r*np.sin(theta), z)
For the rotation I do not quite understand why you make it in two steps. You can use numpy's ravel
to do the rotation of a meshgrid:
# ...
rot = np.dot(Euler,np.array([x.ravel(), y.ravel(), z.ravel()]))
and reshape the rotated coordinates:
x_rot = rot[0,:].reshape(x.shape)
# ...
Putting it together:
import numpy as np
def cyl2cart(r,theta,z):
return (r*np.cos(theta), r*np.sin(theta), z)
def roll( R, zi, zf, Euler):
t = np.arange( 0, 2* np.pi + 0.1, 0.1)
z = np.array([zi, zf])
t, z = np.meshgrid(t, z)
p, q = t.shape
r = R* np.ones([p,q], float)
# cylindrical coordinates to Cartesian coordinate
x, y, z = cyl2cart(r,t,z)
# Euler rotation
rot = np.dot(
Euler,
np.array([x.ravel(), y.ravel(), z.ravel()])
)
x_rot = rot[0,:].reshape(x.shape)
y_rot = rot[1,:].reshape(y.shape)
z_rot = rot[2,:].reshape(z.shape)
return x_rot, y_rot, z_rot
Now roll
does what you want:
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax=fig.add_subplot(111, projection='3d')
x,y,z=roll(1,-2,2,np.array([[1,0,0],[0,1/np.sqrt(2),-1/np.sqrt(2)],[0,1/np.sqrt(2),1/np.sqrt(2)]]))
ax.plot_surface(x,y,z)
plt.show()
Et voilà:
Note that the aspect ratio of the axes is not the same which is why the cylinder does appear with an elliptic curvature. Getting equal axis in a Axes3D
is not straightforward but can be achieved with a workaround by plotting a cubic bounding box (almost copy/pasted from this SO answer):
ax.set_aspect('equal')
max_range = np.array([x.max()-x.min(), y.max()-y.min(), z.max()-z.min()]).max()
Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(x.max()+x.min())
Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() + 0.5*(y.max()+y.min())
Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() + 0.5*(z.max()+z.min())
# Comment or uncomment following both lines to test the fake bounding box:
for xb, yb, zb in zip(Xb, Yb, Zb):
ax.plot([xb], [yb], [zb], 'w')
Simply add this after the ax.plot_surface(...
and the cylinder appear with circular curvature.