Search code examples
labview

how to prevent cpu usage from changing timing in labview?


I'm trying to write a code in which every 1 ms a number plused one , should be replaced the old number . (something like a chronometer ! ) .

the problem is whenever the cpu usage increases because of some other programs running on the pc, this 1 milliseconds is also increased and timing in my program changes !

is there any way to prevent cpu load changes affecting timing in my program ?


Solution

  • It sounds as though you are trying to generate an analogue output waveform with a digital-to-analogue converter card using software timing, where your software is responsible for determining what value should be output at any given time and updating the output accordingly.

    This is OK for stationary or low-speed signals but you are trying to do it at 1 ms intervals, in other words to output 1000 samples per second or 1 ks/s. You cannot do this reliably on a desktop operating system - there are too many other processes going on which can use CPU time and block your program from running for many milliseconds (or even seconds, e.g. for network access).

    Here are a few ways you could solve this:

    • Use buffered, hardware-clocked output if your analogue output device supports it. Instead of writing one sample at a time, you send the device a waveform or array of samples and it outputs them at regular intervals using a timing signal generated in hardware. Unfortunately, low-end DAQ devices often don't support hardware-clocked output.
    • Instead of expecting the loop that writes your samples to the AO to run every millisecond, read LabVIEW's Tick Count (ms) value in the loop and use that as an index to your array of samples: rather than trying to output every sample, your code will now say 'what time is it now, and therefore what should the output be?' That won't give you a perfect signal out but at least now it should keep the correct frequency rather than be 'slowed down' - instead you will see glitches imposed on the signal whenever the loop can't keep up. This is easy to test and maybe it will be adequate for your needs.
    • Use a real-time operating system instead of a desktop OS. In the case of LabVIEW this would mean using the Real-Time software module and either a National Instruments hardware device that supports RT, such as the CompactRIO series, or installing the RT OS on a dedicated PC if the hardware is compatible. This is not a cheap option, obviously (unless it's strictly for personal, home use). In any case you would need to have an RT-compatible driver for your output device.
    • Use your computer's sound output as the output device. LabVIEW has functions for buffered sound output and you should be able to get reliable results. You'll need to upsample your signal to one of the sound output's available sample rates, probably 44.1 ks/s. The drawbacks are that the output level is limited in range and is not calibrated, and will probably be AC-coupled so you can't output a DC or very low-frequency signal. However if the level is OK for what you want to connect it to, or you can add suitable signal conditioning, this could be a neat solution. If you need the output level to be calibrated you could simultaneously measure it with your DAQ card and scale the sound waveform you're outputting to keep it correct.