Search code examples
pythondictionarydefaultdict

Using dictionary to store data (array) in multiple key groups


I am trying to store arrays in multiple key groups to generate group-wise summaries. I thought dict of dicts may be a solution. Based on this answer, I tried to make a dict of dict. Here is the code

import numpy
from collections import defaultdict

s1 = numpy.array([[1L, 'B', 4],
       [1L, 'A', 3],
       [1L, 'B', 10],
       [1L, 'A', 0.0],
       [2L, 'A', 11],
       [2L, 'B', 13],
       [2L, 'B', 1],
       [2L, 'A', 6]], dtype=object)

def make_dict():
    return defaultdict(make_dict)

d = defaultdict(make_dict)

for x in s1:
    d[x[0]][x[1]] = x[2]

So, d[1]['B'] gives 10 while I was expecting [4,10]. Looks like d is picking up the last combination. Is there a way to append all the values that fit a particular key combination? I thought defaultdict should take care of this. Where am I going wrong? Is there any other solution to this? I can easily do it in pandas and I love the library. But I am requiring an non-pandas solution.

Update The question was answered (@juanpa.arrivillaga ) but looks like my example data was inadequate. How about if we had the following as data?

s1 = numpy.array([
        [1L, 'B', 4,3],
        [1L, 'A', 3,5],
        [1L, 'B', 10,23],
        [2L, 'A', 11,1],
        [2L, 'B', 1,8],
        [2L, 'A', 6,23]
        ], dtype=object)

We may not be able to use defaultdict(lambda:defaultdict(list)) as the dictionary container. How to extend the solution to include and append 2D-array instead of list. I expect d[1]['A'] should give me [[3,5],[11,1]]


Solution

  • If you are already using numpy - which, you really shouldn't for heterogeneous data-types, you should just use pandas:

    In [8]: data = [[1, 'B', 4],
       ...:        [1, 'A', 3],
       ...:        [1, 'B', 10],
       ...:        [1, 'A', 0.0],
       ...:        [2, 'A', 11],
       ...:        [2, 'B', 13],
       ...:        [2, 'B', 1],
       ...:        [2, 'A', 6]]
    In [9]: import pandas as pd
    
    In [10]: df = pd.DataFrame(data, columns=['c1','c2','c3'])
    
    In [11]: df
    Out[11]:
       c1 c2    c3
    0   1  B   4.0
    1   1  A   3.0
    2   1  B  10.0
    3   1  A   0.0
    4   2  A  11.0
    5   2  B  13.0
    6   2  B   1.0
    7   2  A   6.0
    
    In [12]: df.groupby(['c1','c2']).describe()
    Out[12]:
             c3
          count mean       std  min   25%  50%    75%   max
    c1 c2
    1  A    2.0  1.5  2.121320  0.0  0.75  1.5   2.25   3.0
       B    2.0  7.0  4.242641  4.0  5.50  7.0   8.50  10.0
    2  A    2.0  8.5  3.535534  6.0  7.25  8.5   9.75  11.0
       B    2.0  7.0  8.485281  1.0  4.00  7.0  10.00  13.0
    

    If you must do this without pandas:

    In [13]: from collections import defaultdict
    
    In [14]: grouper = defaultdict(lambda:defaultdict(list))
    
    In [15]: for c1,c2,c3 in data:
        ...:     grouper[c1][c2].append(c3)
        ...:
    
    In [16]: grouper
    Out[16]:
    defaultdict(<function __main__.<lambda>>,
                {1: defaultdict(list, {'A': [3, 0.0], 'B': [4, 10]}),
                 2: defaultdict(list, {'A': [11, 6], 'B': [13, 1]})})
    In [17]: grouper[1]['B']
    Out[17]: [4, 10]
    

    If you are always going to be grouping on the first two columns, just do something like the following:

    In [6]: grouper = defaultdict(lambda:defaultdict(list))
    
    In [7]: for c1, c2, *rest in s1:
       ...:     grouper[c1][c2].append(rest)
       ...:
    
    In [8]: grouper
    Out[8]:
    defaultdict(<function __main__.<lambda>>,
                {1: defaultdict(list, {'A': [[3, 5]], 'B': [[4, 3], [10, 23]]}),
                 2: defaultdict(list, {'A': [[11, 1], [6, 23]], 'B': [[1, 8]]})})
    
    In [9]: grouper[1]['A']
    Out[9]: [[3, 5]]
    
    In [10]: grouper[1]['B']
    Out[10]: [[4, 3], [10, 23]]
    
    In [11]: grouper[2]['B']
    Out[11]: [[1, 8]]
    
    In [12]: grouper[2]['A']
    Out[12]: [[11, 1], [6, 23]]
    

    For Python 2, you will have to modify a little bit, since it lacks support for iterable unpacking:

    In [8]: for arr in s1:
       ...:     c1, c2 = arr[:2]
       ...:     rest = list(arr[2:])
       ...:     grouper[c1][c2].append(rest)
       ...:
    
    In [9]: grouper
    Out[9]:
    defaultdict(<function __main__.<lambda>>,
                {1L: defaultdict(list, {'A': [[3, 5]], 'B': [[4, 3], [10, 23]]}),
                 2L: defaultdict(list, {'A': [[11, 1], [6, 23]], 'B': [[1, 8]]})})