Search code examples
pythonpython-3.xpandasnumpyspyder

MAPE calculation in Python


I want to calculate Mean Absolute percentage error (MAPE) of predicted and true values. I found a solution from here, but this gives error and shows invalid syntax in the line mask = a <> 0

    def mape_vectorized_v2(a, b): 
    mask = a <> 0
    return (np.fabs(a - b)/a)[mask].mean() 

   def mape_vectorized_v2(a, b): 
       File "<ipython-input-5-afa5c1162e83>", line 1
         def mape_vectorized_v2(a, b):
                                       ^
     SyntaxError: unexpected EOF while parsing

I am using spyder3. My predicted value is a type np.array and true value is dataframe

type(predicted)
Out[7]: numpy.ndarray
type(y_test)
Out[8]: pandas.core.frame.DataFrame

How do i clear this error and proceed with MAPE Calculation ?

Edit :

predicted.head()
Out[22]: 
   Total_kWh
0   7.163627
1   6.584960
2   6.638057
3   7.785487
4   6.994427

y_test.head()
Out[23]: 
     Total_kWh
79         7.2
148        6.7
143        6.7
189        7.2
17         6.4

np.abs(y_test[['Total_kWh']] - predicted[['Total_kWh']]).head()
Out[24]: 
   Total_kWh
0        NaN
1        NaN
2        NaN
3        NaN
4   0.094427

Solution

  • In Python for compare by not equal need !=, not <>.

    So need:

    def mape_vectorized_v2(a, b): 
        mask = a != 0
        return (np.fabs(a - b)/a)[mask].mean()
    

    Another solution from stats.stackexchange:

    def mean_absolute_percentage_error(y_true, y_pred): 
        y_true, y_pred = np.array(y_true), np.array(y_pred)
        return np.mean(np.abs((y_true - y_pred) / y_true)) * 100