model = Sequential()
model.add(keras.layers.InputLayer(input_shape=input_shape))
model.add(keras.layers.convolutional.Conv2D(filters, filtersize, strides=(1, 1), padding='valid', data_format="channels_last", activation='relu'))
model.summary()
and output summary is :
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_10 (InputLayer) (None, 300, 300, 3) 0
_________________________________________________________________
conv2d_16 (Conv2D) (None, 296, 296, 10) 760
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 296, 148, 5) 0
_________________________________________________________________
Above for conv2d_16 layer 10 is depth where as Maxpooling layer 5, how does it possible?
You're very probably using the setting data_format='channels_first'
in the pooling layer.
I see you added 'channels_last'
to the convolutional layer, but you probably didn't add it to the pooling layer.
If you want to change the default setting for keras, find the <user>/.keras/keras.json
file and change it there.