This question actually rephrases that one. The code jam problem is the following:
You are given a complete undirected graph with N nodes and K "forbidden" edges. N <= 300, K <= 15. Find the number of Hamiltonian cycles in the graph that do not use any of the K "forbidden" edges.
The straightforward DP approach of O(2^N*N^2)
does not work for such N. It looks like that the winning solutions are O(2^K)
. Does anybody know how to solve this problem ?
Let's find out for each subset S of forbidden edges, how many Hamiltonian cycles there exist, that use all edges of S. If we solve this subtask then we'll solve the problem by inclusion-exclusion formula.
Now how do we solve the subtask? Let's draw all edges of S. If there exist a vertex of degree more than 2, then obviously we cannot complete the cycle and the answer is 0. Otherwise the graph is divided into connected components. Each component is a sole vertex, a cycle or a simple path.
If there exists a cycle, then it must pass through all vertices, otherwise we won't be able to complete the Hamiltonian cycle. If this is the case, the answer is 2. (The cycle can be traversed in 2 directions.) Otherwise the answer is 0.
The remaining case is when there are c paths and k sole vertices. To complete the Hamiltonian cycle we must choose the direction of each path (2^c ways) and then choose the order of components. We've got c+k components, so they can be rearranged in (c+k)! ways. But we are interested in cycles, so we don't distinguish the orderings which turn into one another by cyclic shifts. (So (1,2,3), (2,3,1) and (3,1,2) are the same.) It means that we must divide the answer by the number of shifts, c+k. So the answer (to the subtask) is 2^c (c+k-1)!.
This idea is implemented in bmerry's solution (very clean code, btw).