Search code examples
pythonkeyerrorpython-ggplotplotnine

KeyError in `plotnine` (ggplot wrapper for python)


I am trying to use plotnine to build graphs and I keep coming across the same KeyError problem when I want to plot just the x-axis. See the traceback error below. A sample of my data is:

       WORD  TAG  TOPIC Value      
0       hey  aa      1  234 
1   working  bb      1  123 
2   lullaby  cc      2  32
3     Doggy  cc      2  63
4  document  aa      3  84

sample of my code:

from plotnine import *
import pandas as pd

inFile = 'infile.csv'
df = pd.read_csv(inFile, names = ['WORD', 'TAG','TOPIC','VALUE'], header=0,sep='\t')
df.sort_values('value',ascending=False)
sortedDf = df[:5]

plot1 = ggplot(sortedDf) + aes(x='TOPIC') + geom_histogram(binwidth=3)

where the final goal is to plot the count of each topic in a histogram. I am not sure what data is missing that is raising the following key error, as there is no need for a weight as I am only interested in plotting the count of that one particular variable, ie. topic 1 = 2, topic 2= 2, topic 3 = 1.

Does anyone have any link to more detailled documentation of plotline or any experience with the library to help me understand more in detail what I am missing.

Traceback Error:


    ---------------------------------------------------------------------------
    KeyError                                  Traceback (most recent call last)
    <ipython-input-112-71707b4cf21a> in <module>()
          1 plot2 = ggplot(sortedDf) + aes(x='TOPIC') + geom_histogram(binwidth=3)
    ----> 2 print plot2

    /Users/anaconda/lib/python2.7/site-packages/plotnine/ggplot.pyc in __repr__(self)
         82         Print/show the plot
         83         """
    ---> 84         self.draw()
         85         plt.show()
         86         return '<ggplot: (%d)>' % self.__hash__()

    /Users/anaconda/lib/python2.7/site-packages/plotnine/ggplot.pyc in draw(self)
        139         # assign a default theme
        140         self = deepcopy(self)
    --> 141         self._build()
        142 
        143         # If no theme we use the default

    /Users/anaconda/lib/python2.7/site-packages/plotnine/ggplot.pyc in _build(self)
        235 
        236         # Apply and map statistics
    --> 237         layers.compute_statistic(layout)
        238         layers.map_statistic(self)
        239 

    /Users/anaconda/lib/python2.7/site-packages/plotnine/layer.pyc in compute_statistic(self, layout)
         92     def compute_statistic(self, layout):
         93         for l in self:
    ---> 94             l.compute_statistic(layout)
         95 
         96     def map_statistic(self, plot):

    /Users/anaconda/lib/python2.7/site-packages/plotnine/layer.pyc in compute_statistic(self, layout)
        369         data = self.stat.use_defaults(data)
        370         data = self.stat.setup_data(data)
    --> 371         data = self.stat.compute_layer(data, params, layout)
        372         self.data = data
        373 

    /Users/anaconda/lib/python2.7/site-packages/plotnine/stats/stat.pyc in compute_layer(cls, data, params, layout)
        194             return cls.compute_panel(pdata, pscales, **params)
        195 
    --> 196         return groupby_apply(data, 'PANEL', fn)
        197 
        198     @classmethod

    /Users/anaconda/lib/python2.7/site-packages/plotnine/utils.pyc in groupby_apply(df, cols, func, *args, **kwargs)
        615         # do not mark d as a slice of df i.e no SettingWithCopyWarning
        616         d.is_copy = None
    --> 617         lst.append(func(d, *args, **kwargs))
        618     return pd.concat(lst, axis=axis, ignore_index=True)
        619 

    /Users/anaconda/lib/python2.7/site-packages/plotnine/stats/stat.pyc in fn(pdata)
        192                 return pdata
        193             pscales = layout.get_scales(pdata['PANEL'].iat[0])
    --> 194             return cls.compute_panel(pdata, pscales, **params)
        195 
        196         return groupby_apply(data, 'PANEL', fn)

    /Users/anaconda/lib/python2.7/site-packages/plotnine/stats/stat.pyc in compute_panel(cls, data, scales, **params)
        221         for _, old in data.groupby('group'):
        222             old.is_copy = None
    --> 223             new = cls.compute_group(old, scales, **params)
        224             unique = uniquecols(old)
        225             missing = unique.columns.difference(new.columns)

    /Users/anaconda/lib/python2.7/site-packages/plotnine/stats/stat_bin.pyc in compute_group(cls, data, scales, **params)
        107         new_data = assign_bins(
        108             data['x'], breaks, data.get('weight'),
    --> 109             params['pad'], params['closed'])
        110         return new_data

    /Users/anaconda/lib/python2.7/site-packages/plotnine/stats/binning.pyc in assign_bins(x, breaks, weight, pad, closed)
        163     df = pd.DataFrame({'bin_idx': bin_idx, 'weight': weight})
        164     wftable = df.pivot_table(
    --> 165         'weight', index=['bin_idx'], aggfunc=np.sum)['weight']
        166 
        167     # Empty bins get no value in the computed frequency table.

    /Users/anaconda/lib/python2.7/site-packages/pandas/core/series.pyc in __getitem__(self, key)
        601             result = self.index.get_value(self, key)
        602 
    --> 603             if not is_scalar(result):
        604                 if is_list_like(result) and not isinstance(result, Series):
        605 

    /Users/anaconda/lib/python2.7/site-packages/pandas/indexes/base.pyc in get_value(self, series, key)

    pandas/index.pyx in pandas.index.IndexEngine.get_value (pandas/index.c:3557)()

    pandas/index.pyx in pandas.index.IndexEngine.get_value (pandas/index.c:3240)()

    pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:4363)()

    KeyError: 'weight'

Solution

  • Nesting aes in ggplot like it is done in R may solve your issue:

    plot1 = ggplot(sortedDf, aes(x='TOPIC')) + geom_histogram(binwidth=3)