I have a GAN network. the generator is drawing mnist digits. It works great. But I cant understand how it knows, which digit it should draw. Here is the Generator:
def build_generator(latent_size):
# we will map a pair of (z, L), where z is a latent vector and L is a
# label drawn from P_c, to image space (..., 1, 28, 28)
cnn = Sequential()
cnn.add(Dense(1024, input_dim=latent_size, activation='relu'))
cnn.add(Dense(128 * 7 * 7, activation='relu'))
cnn.add(Reshape((128, 7, 7)))
# upsample to (..., 14, 14)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Conv2D(256, 5, padding='same',
activation='relu',
kernel_initializer='glorot_normal'))
# upsample to (..., 28, 28)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Conv2D(128, 5, padding='same',
activation='relu',
kernel_initializer='glorot_normal'))
# take a channel axis reduction
cnn.add(Conv2D(1, 2, padding='same',
activation='tanh',
kernel_initializer='glorot_normal'))
# this is the z space commonly refered to in GAN papers
latent = Input(shape=(latent_size, ))
# this will be our label
image_class = Input(shape=(1,), dtype='int32')
cls = Flatten()(Embedding(num_classes, latent_size,
embeddings_initializer='glorot_normal')(image_class))
# hadamard product between z-space and a class conditional embedding
h = layers.multiply([latent, cls])
fake_image = cnn(h)
return Model([latent, image_class], fake_image)
The Input is a latent-array
noise = np.random.uniform(-1, 1, (batch_size, latent_size))
and the labels are just generated randomly.
So my question is. After the network is embedding the labels. They should look like this
So, now. If I give the network more latent-arrays and labels. He is multiplying the latent-arrays(the noise) with the embedding(of the labels): So what I expect is:
So the network knows, what new array represents what number.
but the output of np.multiply(noise,embedded_label) is this:
So how can the network know, what digit it should draw?
So here is the whole code. And it works. But why? The latent_size in the code is 100. The latent_size in my pictures is 2, because I wanted to visualize them. But i think it doesn't change a thing, if I multiply the noise in the 2 dimensional space or the 100 dimensional space. At the end the new points with label "1" are not close to the other points with label "1". Same for the other digits("0","1","2","3",...)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Train an Auxiliary Classifier Generative Adversarial Network (ACGAN) on the
MNIST dataset. See https://arxiv.org/abs/1610.09585 for more details.
You should start to see reasonable images after ~5 epochs, and good images
by ~15 epochs. You should use a GPU, as the convolution-heavy operations are
very slow on the CPU. Prefer the TensorFlow backend if you plan on iterating,
as the compilation time can be a blocker using Theano.
Timings:
Hardware | Backend | Time / Epoch
-------------------------------------------
CPU | TF | 3 hrs
Titan X (maxwell) | TF | 4 min
Titan X (maxwell) | TH | 7 min
Consult https://github.com/lukedeo/keras-acgan for more information and
example output
"""
from __future__ import print_function
from collections import defaultdict
try:
import cPickle as pickle
except ImportError:
import pickle
from PIL import Image
from six.moves import range
import keras.backend as K
from keras.datasets import mnist
from keras import layers
from keras.layers import Input, Dense, Reshape, Flatten, Embedding, Dropout
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.utils.generic_utils import Progbar
import numpy as np
import time, os
np.random.seed(1337)
K.set_image_data_format('channels_first')
num_classes = 10
def build_generator(latent_size):
# we will map a pair of (z, L), where z is a latent vector and L is a
# label drawn from P_c, to image space (..., 1, 28, 28)
cnn = Sequential()
cnn.add(Dense(1024, input_dim=latent_size, activation='relu'))
cnn.add(Dense(128 * 7 * 7, activation='relu'))
cnn.add(Reshape((128, 7, 7)))
# upsample to (..., 14, 14)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Conv2D(256, 5, padding='same',
activation='relu',
kernel_initializer='glorot_normal'))
# upsample to (..., 28, 28)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Conv2D(128, 5, padding='same',
activation='relu',
kernel_initializer='glorot_normal'))
# take a channel axis reduction
cnn.add(Conv2D(1, 2, padding='same',
activation='tanh',
kernel_initializer='glorot_normal'))
# this is the z space commonly refered to in GAN papers
latent = Input(shape=(latent_size, ))
# this will be our label
image_class = Input(shape=(1,), dtype='int32')
cls = Flatten()(Embedding(num_classes, latent_size,
embeddings_initializer='glorot_normal')(image_class))
# hadamard product between z-space and a class conditional embedding
h = layers.multiply([latent, cls])
fake_image = cnn(h)
return Model([latent, image_class], fake_image)
def build_discriminator():
# build a relatively standard conv net, with LeakyReLUs as suggested in
# the reference paper
cnn = Sequential()
cnn.add(Conv2D(32, 3, padding='same', strides=2,
input_shape=(1, 28, 28)))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Conv2D(64, 3, padding='same', strides=1))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Conv2D(128, 3, padding='same', strides=2))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Conv2D(256, 3, padding='same', strides=1))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Flatten())
image = Input(shape=(1, 28, 28))
features = cnn(image)
# first output (name=generation) is whether or not the discriminator
# thinks the image that is being shown is fake, and the second output
# (name=auxiliary) is the class that the discriminator thinks the image
# belongs to.
fake = Dense(1, activation='sigmoid', name='generation')(features) # fake oder nicht fake
aux = Dense(num_classes, activation='softmax', name='auxiliary')(features) #welche klasse ist es
return Model(image, [fake, aux])
if __name__ == '__main__':
start_time_string = time.strftime("%Y_%m_%d_%H_%M_%S", time.gmtime())
os.mkdir('history/' + start_time_string)
os.mkdir('images/' + start_time_string)
os.mkdir('acgan/' + start_time_string)
# batch and latent size taken from the paper
epochs = 50
batch_size = 100
latent_size = 100
# Adam parameters suggested in https://arxiv.org/abs/1511.06434
adam_lr = 0.00005
adam_beta_1 = 0.5
# build the discriminator
discriminator = build_discriminator()
discriminator.compile(
optimizer=Adam(lr=adam_lr, beta_1=adam_beta_1),
loss=['binary_crossentropy', 'sparse_categorical_crossentropy']
)
# build the generator
generator = build_generator(latent_size)
generator.compile(optimizer=Adam(lr=adam_lr, beta_1=adam_beta_1),
loss='binary_crossentropy')
latent = Input(shape=(latent_size, ))
image_class = Input(shape=(1,), dtype='int32')
# get a fake image
fake = generator([latent, image_class])
# we only want to be able to train generation for the combined model
discriminator.trainable = False
fake, aux = discriminator(fake)
combined = Model([latent, image_class], [fake, aux])
combined.compile(
optimizer=Adam(lr=adam_lr, beta_1=adam_beta_1),
loss=['binary_crossentropy', 'sparse_categorical_crossentropy']
)
# get our mnist data, and force it to be of shape (..., 1, 28, 28) with
# range [-1, 1]
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = (x_train.astype(np.float32) - 127.5) / 127.5
x_train = np.expand_dims(x_train, axis=1)
x_test = (x_test.astype(np.float32) - 127.5) / 127.5
x_test = np.expand_dims(x_test, axis=1)
num_train, num_test = x_train.shape[0], x_test.shape[0]
train_history = defaultdict(list)
test_history = defaultdict(list)
for epoch in range(1, epochs + 1):
print('Epoch {}/{}'.format(epoch, epochs))
num_batches = int(x_train.shape[0] / batch_size)
progress_bar = Progbar(target=num_batches)
epoch_gen_loss = []
epoch_disc_loss = []
for index in range(num_batches):
# generate a new batch of noise
noise = np.random.uniform(-1, 1, (batch_size, latent_size))
# get a batch of real images
image_batch = x_train[index * batch_size:(index + 1) * batch_size]
label_batch = y_train[index * batch_size:(index + 1) * batch_size]
# sample some labels from p_c
sampled_labels = np.random.randint(0, num_classes, batch_size)
# generate a batch of fake images, using the generated labels as a
# conditioner. We reshape the sampled labels to be
# (batch_size, 1) so that we can feed them into the embedding
# layer as a length one sequence
generated_images = generator.predict(
[noise, sampled_labels.reshape((-1, 1))], verbose=0)
x = np.concatenate((image_batch, generated_images))
y = np.array([1] * batch_size + [0] * batch_size)
aux_y = np.concatenate((label_batch, sampled_labels), axis=0)
# see if the discriminator can figure itself out...
epoch_disc_loss.append(discriminator.train_on_batch(x, [y, aux_y]))
# make new noise. we generate 2 * batch size here such that we have
# the generator optimize over an identical number of images as the
# discriminator
noise = np.random.uniform(-1, 1, (2 * batch_size, latent_size))
sampled_labels = np.random.randint(0, num_classes, 2 * batch_size)
# we want to train the generator to trick the discriminator
# For the generator, we want all the {fake, not-fake} labels to say
# not-fake
trick = np.ones(2 * batch_size)
epoch_gen_loss.append(combined.train_on_batch(
[noise, sampled_labels.reshape((-1, 1))],
[trick, sampled_labels]))
progress_bar.update(index + 1)
print('Testing for epoch {}:'.format(epoch))
# evaluate the testing loss here
# generate a new batch of noise
noise = np.random.uniform(-1, 1, (num_test, latent_size))
# sample some labels from p_c and generate images from them
sampled_labels = np.random.randint(0, num_classes, num_test)
generated_images = generator.predict(
[noise, sampled_labels.reshape((-1, 1))], verbose=False)
x = np.concatenate((x_test, generated_images))
y = np.array([1] * num_test + [0] * num_test)
aux_y = np.concatenate((y_test, sampled_labels), axis=0)
# see if the discriminator can figure itself out...
discriminator_test_loss = discriminator.evaluate(
x, [y, aux_y], verbose=False)
discriminator_train_loss = np.mean(np.array(epoch_disc_loss), axis=0)
# make new noise
noise = np.random.uniform(-1, 1, (2 * num_test, latent_size))
sampled_labels = np.random.randint(0, num_classes, 2 * num_test)
trick = np.ones(2 * num_test)
generator_test_loss = combined.evaluate(
[noise, sampled_labels.reshape((-1, 1))],
[trick, sampled_labels], verbose=False)
generator_train_loss = np.mean(np.array(epoch_gen_loss), axis=0)
# generate an epoch report on performance
train_history['generator'].append(generator_train_loss)
train_history['discriminator'].append(discriminator_train_loss)
test_history['generator'].append(generator_test_loss)
test_history['discriminator'].append(discriminator_test_loss)
print('{0:<22s} | {1:4s} | {2:15s} | {3:5s}'.format(
'component', *discriminator.metrics_names))
print('-' * 65)
ROW_FMT = '{0:<22s} | {1:<4.2f} | {2:<15.2f} | {3:<5.2f}'
print(ROW_FMT.format('generator (train)',
*train_history['generator'][-1]))
print(ROW_FMT.format('generator (test)',
*test_history['generator'][-1]))
print(ROW_FMT.format('discriminator (train)',
*train_history['discriminator'][-1]))
print(ROW_FMT.format('discriminator (test)',
*test_history['discriminator'][-1]))
# save weights every epoch
generator.save_weights(
'acgan/'+ start_time_string +'/params_generator_epoch_{0:03d}.hdf5'.format(epoch), True)
discriminator.save_weights(
'acgan/'+ start_time_string +'/params_discriminator_epoch_{0:03d}.hdf5'.format(epoch), True)
# generate some digits to display
noise = np.random.uniform(-1, 1, (100, latent_size))
sampled_labels = np.array([
[i] * num_classes for i in range(num_classes)
]).reshape(-1, 1)
# get a batch to display
generated_images = generator.predict(
[noise, sampled_labels], verbose=0)
# arrange them into a grid
img = (np.concatenate([r.reshape(-1, 28)
for r in np.split(generated_images, num_classes)
], axis=-1) * 127.5 + 127.5).astype(np.uint8)
Image.fromarray(img).save(
'images/'+ start_time_string +'/plot_epoch_{0:03d}_generated.png'.format(epoch))
pickle.dump({'train': train_history, 'test': test_history},
open('history/'+ start_time_string +'/acgan-history.pkl', 'wb'))
Your noise is too big, and has negative values.
You should not multiply the noise, but sum it (and make it a lot smaller). By multiplying +1 and -1, you can completely change the input. That's the reason for having that completely scattered image in reality.
If even with that weird scattered input the model is still able to recognize the number you meant, then it's probably using certain dimensions of the latent vector more than its actual values.
If you look closely to the scattered graph, it has some interesting patterns such as:
If we can see a pattern (even in a 2D graph hiding actual 100 dimensions), the model can also see a pattern. This pattern might be extremely evident if we could see all the 100 dimensions.
So, your embedding is probably creating a compensation for the wild random factors, maybe by eliminating the random factors with zeros in certain groups of dimensions. That makes the straight lines following certain axes. And certain combinations zero dimensions versus varying dimensions may identify a label.
Example:
Then the random factor will never change those zeros, and the model can identify a number by checking those groups of four zeros in the examples.
Of course, this is just one supposition... there might be many other possible ways for the model to work around the random factors... but if one exists, it's enough to show that it's ok for the model to find it.