softmax
activation function for output layer having only a single neuron?Test:
Setup:
In [227]: %paste
clf = MLPClassifier()
m = 10**3
n = 64
df = pd.DataFrame(np.random.randint(100, size=(m, n))).add_prefix('x') \
.assign(y=np.random.choice([-1,1], m))
X_train, X_test, y_train, y_test = \
train_test_split(df.drop('y',1), df['y'], test_size=0.2, random_state=33)
clf.fit(X_train, y_train)
## -- End pasted text --
Out[227]:
MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,
beta_2=0.999, early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=(100,), learning_rate='constant',
learning_rate_init=0.001, max_iter=200, momentum=0.9,
nesterovs_momentum=True, power_t=0.5, random_state=None,
shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1,
verbose=False, warm_start=False)
Number of outputs:
In [229]: clf.n_outputs_
Out[229]: 1
Number of layers:
In [228]: clf.n_layers_
Out[228]: 3
The number of iterations the solver has ran:
In [230]: clf.n_iter_
Out[230]: 60
Here is an excerpt of the source code where the activation function for the output layer will be chosen:
# Output for regression
if not is_classifier(self):
self.out_activation_ = 'identity'
# Output for multi class
elif self._label_binarizer.y_type_ == 'multiclass':
self.out_activation_ = 'softmax'
# Output for binary class and multi-label
else:
self.out_activation_ = 'logistic'
if not incremental:
self._label_binarizer = LabelBinarizer()
self._label_binarizer.fit(y)
self.classes_ = self._label_binarizer.classes_