Creating TFrecords for Image input: as below
char_ids_padded, char_ids_unpadded = encode_utf8_string(text)
print("char_ids_padded:"+str(char_ids_padded))
print("char_ids_unpadded:"+str(char_ids_unpadded))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/format': _bytes_feature(b'png'),
'image/encoded': _bytes_feature(image.tostring()),
'image/class': _int64_feature(char_ids_padded),
'image/unpadded_class': _int64_feature(char_ids_unpadded),
'height': _int64_feature(image.shape[0]),
'width': _int64_feature(image.shape[1]),
'orig_width': _int64_feature(image.shape[1]/num_of_views),
'image/text': _bytes_feature(text)
}))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
Output for char_ids_padded, char_ids_unpadded as below:
char_ids_padded:[47, 13, 16, 13, 16, 16, 16, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
char_ids_unpadded:[47, 13, 16, 13, 16, 16, 16, 52]
Note: char_ids_padded is in list format with type int, Still while mapping with tf.train.Features, getting error as TypeError: [47, 13, 16, 13, 16, 16, 16, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] has type "class 'list'", but expected one of: ("class 'int'",)
You're already passing a list to tf.train.Int64List
, so you don't need to create a new list containing the argument of _int64_feature
. That is, you should try changing
tf.train.Int64List(value=[value])
to
tf.train.Int64List(value=value)
in the _int64_feature
function.
When I run the following code, it works:
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
char_ids_padded = [47, 13, 16, 13, 16, 16, 16, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/class': _int64_feature(char_ids_padded),
}))