Search code examples
tensorflowdeep-learningclassificationtensorboardmnist

MNIST Classification: low accuracy (10%) and no change in loss


I'm learning TensorFlow and tired to apply on mnist database. My question is (see attached image) :

  • what could cause such output for accuracy (improving and then degrading!) & Loss (almost constant!)
  • the accuracy isn't that great just hovering around 10%

Accuracy / Loss - Tensorboard]

Despite:

  • 5 layer network (incl. output layer), with 200/10/60/30/10 neurons respectively
  • Is the network not learning ? despite 0.1 learning rate (which is quite high I believe)

Full code: https://github.com/vibhorj/tf > mnist-2.py

1) here's how the layers are defined:

K,L,M,N=200,100,60,30
""" Layer 1 """
with tf.name_scope('L1'):
    w1 = tf.Variable(initial_value = tf.truncated_normal([28*28,K],mean=0,stddev=0.1), name = 'w1')
    b1 = tf.Variable(initial_value = tf.truncated_normal([K],mean=0,stddev=0.1), name = 'b1')
""" Layer 2 """
with tf.name_scope('L2'):
    w2 = tf.Variable(initial_value =tf.truncated_normal([K,L],mean=0,stddev=0.1), name = 'w2')
    b2 = tf.Variable(initial_value = tf.truncated_normal([L],mean=0,stddev=0.1), name = 'b2')
""" Layer 3 """
with tf.name_scope('L3'):
    w3 = tf.Variable(initial_value = tf.truncated_normal([L,M],mean=0,stddev=0.1), name = 'w3')
    b3 = tf.Variable(initial_value = tf.truncated_normal([M],mean=0,stddev=0.1), name = 'b3')
""" Layer 4 """
with tf.name_scope('L4'):
    w4 = tf.Variable(initial_value = tf.truncated_normal([M,N],mean=0,stddev=0.1), name = 'w4')
    b4 = tf.Variable(initial_value = tf.truncated_normal([N],mean=0,stddev=0.1), name = 'b4')
""" Layer output """
with tf.name_scope('L_out'):
    w_out = tf.Variable(initial_value = tf.truncated_normal([N,10],mean=0,stddev=0.1), name = 'w_out')
    b_out = tf.Variable(initial_value = tf.truncated_normal([10],mean=0,stddev=0.1), name = 'b_out')

2) loss function

Y1 = tf.nn.sigmoid(tf.add(tf.matmul(X,w1),b1), name='Y1')
Y2 = tf.nn.sigmoid(tf.add(tf.matmul(Y1,w2),b2), name='Y2')
Y3 = tf.nn.sigmoid(tf.add(tf.matmul(Y2,w3),b3), name='Y3')
Y4 = tf.nn.sigmoid(tf.add(tf.matmul(Y3,w4),b4), name='Y4')

Y_pred_logits = tf.add(tf.matmul(Y4, w_out),b_out,name='logits')
Y_pred_prob = tf.nn.softmax(Y_pred_logits, name='probs')

error = -tf.matmul(Y
              , tf.reshape(tf.log(Y_pred_prob),[10,-1]), name ='err')
loss = tf.reduce_mean(error, name = 'loss')

3) optimization function

opt = tf.train.GradientDescentOptimizer(0.1)
grads_and_vars = opt.compute_gradients(loss)
ctr = tf.Variable(0.0, name='ctr')
z = opt.apply_gradients(grads_and_vars, global_step=ctr)  

4) Tensorboard code:

evt_file = tf.summary.FileWriter('/Users/vibhorj/python/-tf/g_mnist')
evt_file.add_graph(tf.get_default_graph())

s1 = tf.summary.scalar(name='accuracy', tensor=accuracy)
s2 = tf.summary.scalar(name='loss', tensor=loss)
m1 = tf.summary.merge([s1,s2])

5) run the session (test data is mnist.test.images & mnist.test.labels

with tf.Session() as sess:
    sess.run(tf.variables_initializer(tf.global_variables()))
    for i in range(300):
       """ calc. accuracy on test data - TENSORBOARD before iteration beings """
       summary = sess.run(m1, feed_dict=test_data)
       evt_file.add_summary(summary, sess.run(ctr))
       evt_file.flush()

       """ fetch train data """        
       a_train, b_train = mnist.train.next_batch(batch_size=100)
       train_data = {X: a_train , Y: b_train}

       """ train """
       sess.run(z, feed_dict = train_data)

Appreciate your time to provide any insight into it. I'm completely clueless hwo to proceed further (even tried initializing w & b with random_normal, played with learning rates [0.1,0.01, 0.001])

Cheers!


Solution

  • Please consider

    1. Initializing biases to zeros
    2. Using ReLU units instead of sigmoid - avoid saturation
    3. Using Adam optimizer - faster learning

    I feel that your network is quite large. You could do with a smaller network.

    K,L,M,N=200,100,60,30
    """ Layer 1 """
    with tf.name_scope('L1'):
        w1 = tf.Variable(initial_value = tf.truncated_normal([28*28,K],mean=0,stddev=0.1), name = 'w1')
        b1 = tf.zeros([K])#tf.Variable(initial_value = tf.truncated_normal([K],mean=0,stddev=0.01), name = 'b1')
    """ Layer 2 """
    with tf.name_scope('L2'):
        w2 = tf.Variable(initial_value =tf.truncated_normal([K,L],mean=0,stddev=0.1), name = 'w2')
        b2 = tf.zeros([L])#tf.Variable(initial_value = tf.truncated_normal([L],mean=0,stddev=0.01), name = 'b2')
    """ Layer 3 """
    with tf.name_scope('L3'):
        w3 = tf.Variable(initial_value = tf.truncated_normal([L,M],mean=0,stddev=0.1), name = 'w3')
        b3 = tf.zeros([M]) #tf.Variable(initial_value = tf.truncated_normal([M],mean=0,stddev=0.01), name = 'b3')
    """ Layer 4 """
    with tf.name_scope('L4'):
        w4 = tf.Variable(initial_value = tf.truncated_normal([M,N],mean=0,stddev=0.1), name = 'w4')
        b4 = tf.zeros([N])#tf.Variable(initial_value = tf.truncated_normal([N],mean=0,stddev=0.1), name = 'b4')
    """ Layer output """
    with tf.name_scope('L_out'):
        w_out = tf.Variable(initial_value = tf.truncated_normal([N,10],mean=0,stddev=0.1), name = 'w_out')
        b_out = tf.zeros([10])#tf.Variable(initial_value = tf.truncated_normal([10],mean=0,stddev=0.1), name = 'b_out')
    
    
    Y1 = tf.nn.relu(tf.add(tf.matmul(X,w1),b1), name='Y1')
    Y2 = tf.nn.relu(tf.add(tf.matmul(Y1,w2),b2), name='Y2')
    Y3 = tf.nn.relu(tf.add(tf.matmul(Y2,w3),b3), name='Y3')
    Y4 = tf.nn.relu(tf.add(tf.matmul(Y3,w4),b4), name='Y4')
    
    Y_pred_logits = tf.add(tf.matmul(Y4, w_out),b_out,name='logits')
    
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=Y_pred_logits, name='xentropy'))
    opt = tf.train.GradientDescentOptimizer(0.01)
    grads_and_vars = opt.compute_gradients(loss)
    ctr = tf.Variable(0.0, name='ctr', trainable=False)
    train_op = opt.minimize(loss, global_step=ctr)
    
    for v in tf.trainable_variables():
      print v.op.name
    
    with tf.Session() as sess:
        sess.run(tf.variables_initializer(tf.global_variables()))
        for i in range(3000):
           """ calc. accuracy on test data - TENSORBOARD before iteration beings """
           #summary = sess.run(m1, feed_dict=test_data)
           #evt_file.add_summary(summary, sess.run(ctr))
           #evt_file.flush()
    
           """ fetch train data """
           a_train, b_train = mnist.train.next_batch(batch_size=100)
           train_data = {X: a_train , Y: b_train}
    
           """ train """
           l = sess.run(loss, feed_dict = train_data)
           print l
           sess.run(train_op, feed_dict = train_data)