I try to obtain the first three coefficients for Cauchy's dispersion equation for Silicon. Using a csv containing the refractive index for some wavelengths (that you can find here), I try to fit the following model :
library(readr)
library(tidyverse)
library(magrittr)
library(modelr)
library(broom)
library(splines)
# CSV parsing
RefractiveIndexINFO <- read_csv("./silicon-index.csv")
# Cleaning the output of the csv-parsing
indlong = tibble(RefractiveIndexINFO$`Wavelength. µm`,RefractiveIndexINFO$n)
names(indlong) = c('w','n')
# Remove some wavelengths that might not fit
indlong_non_uv = indlong %>% filter(indlong$w >= 0.4)
# Renaming variables
w = indlong_non_uv$w
n = indlong_non_uv$n
# Creating the non linear model
model = nls(n ~ a + b*ns(w,-2) + c*ns(w,-4), data = indlong_non_uv)
# Gathering informations on the fitted model
cor(indlong_non_uv$n,predict(model))
tidy(model)
Which gives the following error :
Error in c * ns(w, -4) : non-numeric argument to binary operator
How can I circumvent this situation and get the three coefficients (a,b,c) in a row ?
Obviously, using model = nls(n ~ a + b*ns(w,-2), data = indlong_non_uv)
does not give an error.
Try this:
library(readr)
library(tidyverse)
library(magrittr)
library(modelr)
library(broom)
library(splines)
# CSV parsing
RefractiveIndexINFO <- read_csv("aspnes.csv")
RefractiveIndexINFO <- RefractiveIndexINFO[1:46,]
RefractiveIndexINFO <- as.data.frame(apply(RefractiveIndexINFO,2,as.numeric))
names(RefractiveIndexINFO) <- c('w','n')
indlong_non_uv = RefractiveIndexINFO %>% filter(RefractiveIndexINFO$w >= 0.4)
# Creating the nonlinear model
model <- nls(n ~ a + b*w^(-2) + c*w^(-4), data = indlong_non_uv,
start=list(a=1, b=1, c=1))
# Gathering informations on the fitted model
cor(indlong_non_uv$n,predict(model))
# [1] 0.9991006
tidy(model)
# term estimate std.error statistic p.value
# 1 a 3.65925186 0.039368851 92.947896 9.686805e-20
# 2 b -0.04981151 0.024099580 -2.066904 5.926046e-02
# 3 c 0.05282668 0.003306895 15.974707 6.334197e-10
Alternatively, you can use linear regression:
model2 <- lm(n ~ I(w^(-2)) + I(w^(-4)), data = indlong_non_uv)
summary(model2)
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 3.659252 0.039369 92.948 < 2e-16 ***
# I(w^(-2)) -0.049812 0.024100 -2.067 0.0593 .
# I(w^(-4)) 0.052827 0.003307 15.975 6.33e-10 ***