I'm using Python to pull data from Googles adwords API. I'd like to put that data into a Pandas DataFrame so I can perform analysis on the data. I'm using examples provided by Google here.
Below is my attempt to try to get the output to be read as a pandas dataframe:
from googleads import adwords
import pandas as pd
import numpy as np
# Initialize appropriate service.
adwords_client = adwords.AdWordsClient.LoadFromStorage()
report_downloader = adwords_client.GetReportDownloader(version='v201710')
# Create report query.
report_query = ('''
select Date, Clicks
from ACCOUNT_PERFORMANCE_REPORT
during LAST_7_DAYS''')
df = pd.read_csv(report_downloader.DownloadReportWithAwql(
report_query,
'CSV',
client_customer_id='xxx-xxx-xxxx', # denotes which adw account to pull from
skip_report_header=True,
skip_column_header=False,
skip_report_summary=True,
include_zero_impressions=True))
The output is the data in what looks like csv format and an error.
Day,Clicks
2017-11-05,42061
2017-11-07,45792
2017-11-03,36874
2017-11-02,39790
2017-11-06,44934
2017-11-08,45631
2017-11-04,36031
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-cc25e32c9f3a> in <module>()
25 skip_column_header=False,
26 skip_report_summary=True,
---> 27 include_zero_impressions=True))
/anaconda/lib/python3.6/site-packages/pandas/io/parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision)
653 skip_blank_lines=skip_blank_lines)
654
--> 655 return _read(filepath_or_buffer, kwds)
656
657 parser_f.__name__ = name
/anaconda/lib/python3.6/site-packages/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
390 compression = _infer_compression(filepath_or_buffer, compression)
391 filepath_or_buffer, _, compression = get_filepath_or_buffer(
--> 392 filepath_or_buffer, encoding, compression)
393 kwds['compression'] = compression
394
/anaconda/lib/python3.6/site-packages/pandas/io/common.py in get_filepath_or_buffer(filepath_or_buffer, encoding, compression)
208 if not is_file_like(filepath_or_buffer):
209 msg = "Invalid file path or buffer object type: {_type}"
--> 210 raise ValueError(msg.format(_type=type(filepath_or_buffer)))
211
212 return filepath_or_buffer, None, compression
ValueError: Invalid file path or buffer object type: <class 'NoneType'>
I know I am missing something fundamental and I do not fully understand how to get data into a pandas dataframe. Any help would be greatly appreciated.
So I was able to find out the answer to my own question if anybody is curious or had the same problem I did. I had to import io
and wrote the output from the adwords query to a string that I named output
. I then used the seek()
method to start from the beginning and read that using pandas read_csv
.
from googleads import adwords
import pandas as pd
import numpy as np
import io
# Define output as a string
output = io.StringIO()
# Initialize appropriate service.
adwords_client = adwords.AdWordsClient.LoadFromStorage()
report_downloader = adwords_client.GetReportDownloader(version='v201710')
# Create report query.
report_query = ('''
select Date, HourOfDay, Clicks
from ACCOUNT_PERFORMANCE_REPORT
during LAST_7_DAYS''')
# Write query result to output file
report_downloader.DownloadReportWithAwql(
report_query,
'CSV',
output,
client_customer_id='xxx-xxx-xxx', # denotes which adw account to pull from
skip_report_header=True,
skip_column_header=False,
skip_report_summary=True,
include_zero_impressions=False)
output.seek(0)
df = pd.read_csv(output)
df.head()