I'm currently building a Tool that generates a PDF report using Python pdfkit and jinja.
This report builds on a lot of static html and around 30 functions that produces data and images (charts) for the report. These functions all access external data through pyodbc or pandas from_sql.
I am now running into performance issues, and the report takes around 5 minutes to build.
I'm hoping to utilize multithreading in order to build a dictionary of data, but have not been able to figure out how to approach the issue.
My current code looks something like this.
def buildReport():
if checkKvaegCVR(SQL = checkKvaegCVRSQL(cvrNummer = cvrNummer), cursor = OEDBCursor):
env = Environment(loader=FileSystemLoader('.'))
template = env.get_template("templates/kvaeg/kvaegBase.html")
pdfOptions = {
'page-size': 'A4',
'margin-top': '0.75in',
'margin-right': '0.75in',
'margin-bottom': '0.75in',
'margin-left': '0.75in',
'quiet': '',
'encoding': "UTF-8",
'footer-right': '[page]'
}
css = 'static/css/style.css'
template_vars = {'kvaegForsideBillede': imageBuilder()['kvaegForsideBillede'],
'bagsideBillede': imageBuilder()['bagsideBillede'],
'navn' : bedriftAdresse(cvrNummer = cvrNummer,
cursor = KundeAnalyseDBCursor)[0],
'adresse' : bedriftAdresse(cvrNummer = cvrNummer,
cursor = KundeAnalyseDBCursor)[1],
'postnrBy' : str(int(bedriftAdresse(cvrNummer = cvrNummer, cursor = KundeAnalyseDBCursor)[2])) + ' ' +
bedriftAdresse(cvrNummer = cvrNummer, cursor = KundeAnalyseDBCursor)[3],
'fremstillingsprisKorr': imageBuilder()['fremstillingsprisKorr'],
'fremstillingsprisForbedring':imageBuilder()['fremstillingsprisForbedring'],
'graesoptagelse':kgGraesPrKo(),
'indreSaedskifteKort':indreSaedskifteKortPNG(CVRPunkt = CVRPunkt(cvrNummer, KundeAnalyseDBCursor),
CVRBuffer = CVRBuffer(cvrNummer, KundeAnalyseDBCursor),
indreSaedskifteKort = indreSaedskifteKort(indreSaedskifteKortSQL = indreSaedskifteKortSQL(cvrNummer = cvrNummer), cursor = KundeAnalyseDBCursor)),
'naboKort':naboKortPNG(CVRPunkt = CVRPunkt(cvrNummer = cvrNummer, cursor = KundeAnalyseDBCursor),
CVRBuffer = CVRBuffer(cvrNummer = cvrNummer, cursor = KundeAnalyseDBCursor),
naboKort = naboKort(naboMarkerSQL = naboMarkerSQL(cvrNummer = cvrNummer),
egneMarkerSQL = egneMarkerSQL(cvrNummer = cvrNummer),
cursor = KundeAnalyseDBCursor))
...
...
30 more functions here
...
...}
pdfkit.from_string(template.render(template_vars), 'KvaegRapport - {}.pdf'.format(cvrNummer), options=pdfOptions, css=css)
print('Rapporten er klar')
else:
print('Kan ikke bygge rapport på dette CVR nummer')
I would like to build the dictionary "Template_vars" using multithreading (probably outside my main function)
Any suggestions?
I could suggest following but with multiprocessing (the following code has not been tested):
from multiprocessing import Process, Queue
def make_smth(func, queue, name, *args, **kwargs):
queue.put((name, func(*args, **kwargs)))
result_queue = Queue()
processes = list()
processes.append(
Process(target=make_smth,
args=(bedriftAdresse, result_queue, "navn"),
kwargs={cvrNummer: cvrNummer, cursor: KundeAnalyseDBCursor[0]}
)
)
processes.append(
Process(target=make_smth,
args=(kgGraesPrKo, result_queue, "graesoptagelse"),
kwargs={}
)
)
#...... You should do it for each of your functions
for p in processes:
p.start()
template_vars = {}
result = result_queue.get()
while result:
template_vars[result[0]] = result[1]
result = result_queue.get()