I am trying to Implement gradient Descent algorithm from scratch to find the slope and intercept value for my linear fit line.
Using the package and calculating slope and intercept, I get slope = 0.04 and intercept = 7.2 but when I use my gradient descent algorithm for the same problem, I get slope and intercept both values = (-infinity,-infinity)
Here is my code
x= [1,2,3,4,5,6,7,8,9,10,11,12,13,141,5,16,17,18,19,20]
y=[2,3,4,5,6,7,8,9,10,11,12,13,141,5,16,17,18,19,20,21]
function GradientDescent()
m=0
c=0
for i=1:10000
for k=1:length(x)
Yp = m*x[k] + c
E = y[k]-Yp #error in predicted value
dm = 2*E*(-x[k]) # partial derivation of cost function w.r.t slope(m)
dc = 2*E*(-1) # partial derivate of cost function w.r.t. Intercept(c)
m = m + (dm * 0.001)
c = c + (dc * 0.001)
end
end
return m,c
end
Values = GradientDescent() # after running values = (-inf,-inf)
I have not done the math, but instead wrote the tests. It seems you got a sign error when assigning m and c.
Also, writing the tests really helps, and Julia makes it simple :)
function GradientDescent(x, y)
m=0.0
c=0.0
for i=1:10000
for k=1:length(x)
Yp = m*x[k] + c
E = y[k]-Yp
dm = 2*E*(-x[k])
dc = 2*E*(-1)
m = m - (dm * 0.001)
c = c - (dc * 0.001)
end
end
return m,c
end
using Base.Test
@testset "gradient descent" begin
@testset "slope $slope" for slope in [0, 1, 2]
@testset "intercept for $intercept" for intercept in [0, 1, 2]
x = 1:20
y = broadcast(x -> slope * x + intercept, x)
computed_slope, computed_intercept = GradientDescent(x, y)
@test slope ≈ computed_slope atol=1e-8
@test intercept ≈ computed_intercept atol=1e-8
end
end
end