I am trying to model one of my project in promela for model checking. In that, i have N no of nodes in network. So, for each node I am making a process. Something like this:
init {
byte proc;
atomic {
proc = 0;
do
:: proc < N ->
run node (q[proc],proc);
proc++
:: proc >= N ->
break
od
}
}
So, basically, here each 'node' is process that will simulate each node in my network. Now, Node Process has 3 threads which run parallelly in my original implementation and within these three threads i have lock at some part so that three threads don't access Critical Section at the same time. So, for this in promela, i have done something like this:
proctype node (chan inp;byte ppid)
{
run recv_A()
run send_B()
run do_C()
}
So here recv_A, send_B and do_C are the three threads running parallelly at each node in the network. Now, the problem is, if i put lock in recv_A, send_B, do_C using atomic then it will put lock lock over all 3*N processes whereas i want a lock such that the lock is applied over groups of three. That is, if process1's(main node process from which recv_A is made to run) recv_A is in its CS then only process1's send_B and do_C should be prohibited to enter into CS and not process2's recv_A, send_B, do_C. Is there a way to do this?
Your have several options, and all revolve around implementing some kind of mutual exclusion algorithm among N processes:
An implementation of the Black & White Bakery Algorithm is available here. Note, however, that these algorithms -maybe with the exception of Peterson's one- tend to be complicated and might make the verification of your system impractical.
A somewhat simple approach is to resort on the Test & Set Algorithm which, however, still uses atomic
in the trying section. Here is an example implementation taken from here.
bool lock = false;
int counter = 0;
active [3] proctype mutex()
{
bool tmp = false;
trying:
do
:: atomic {
tmp = lock;
lock = true;
} ->
if
:: tmp;
:: else -> break;
fi;
od;
critical:
printf("Process %d entered critical section.\n", _pid);
counter++;
assert(counter == 1);
counter--;
exit:
lock = false;
printf("Process %d exited critical section.\n", _pid);
goto trying;
}
#define c0 (mutex[0]@critical)
#define c1 (mutex[1]@critical)
#define c2 (mutex[2]@critical)
#define t0 (mutex[0]@trying)
#define t1 (mutex[1]@trying)
#define t2 (mutex[2]@trying)
#define l0 (_last == 0)
#define l1 (_last == 1)
#define l2 (_last == 2)
#define f0 ([] <> l0)
#define f1 ([] <> l1)
#define f2 ([] <> l2)
ltl p1 { [] !(c0 && c1) && !(c0 && c2) && !(c1 && c2)}
ltl p2 { []((t0 || t1 || t2) -> <> (c0 || c1 || c2)) }
ltl p3 {
(f0 -> [](t0 -> <> c0))
&&
(f1 -> [](t1 -> <> c1))
&&
(f2 -> [](t2 -> <> c2))
};
In your code, you should use a different lock
variable for every group of 3
related threads. The lock contention would still happen at a global level, but some process working inside the critical section would not cause other processes to wait other than those who belong to the same thread group.
Another idea is that to exploit channels to achieve mutual exclusion: have each group of threads share a common asynchronous channel which initially contains one token
message. Whenever one of these threads wants to access the critical section, it reads from the channel. If the token
is not inside the channel, it waits until it becomes available. Otherwise, it can go forward in the critical section and when it finishes it puts the token
back inside the shared channel.
proctype node (chan inp; byte ppid)
{
chan lock = [1] of { bool };
lock!true;
run recv_A(lock);
run send_B(lock);
run do_C(lock);
};
proctype recv_A(chan lock)
{
bool token;
do
:: true ->
// non-critical section code
// ...
// acquire lock
lock?token ->
// critical section
// ...
// release lock
lock!token
// non-critical section code
// ...
od;
};
...
This approach might be the simplest to start with, so I would pick this one first. Note however that I have no idea on how that affects performance during verification time, and this might very well depend on how channels are internally handled by Spin
. A complete code example of this solution can be found here in the file channel_mutex.pml
.
To conclude, note that you might want to add mutual exclusion, progress and lockout-freedom LTL
properties to your model to ensure that it behaves correctly. An example of the definition of these properties is available here and a code example is available here.