I am trying to classify a dataset of reviews in to two classes say class A and class B. I am using LightGBM
to classify.
I have changed the parameters for the classifier many times but I can't get a huge difference in the results.
I think the problem is with the pre-processing step. I defined a function as shown below to take care of pre-processing. I used Stemming
and removed stopwords
. I don't know what I am missing. I have tried LancasterStemmer
and PorterStemmer
stops = set(stopwords.words("english"))
def cleanData(text, lowercase = False, remove_stops = False, stemming = False, lemm = False):
txt = str(text)
txt = re.sub(r'[^A-Za-z0-9\s]',r'',txt)
txt = re.sub(r'\n',r' ',txt)
if lowercase:
txt = " ".join([w.lower() for w in txt.split()])
if remove_stops:
txt = " ".join([w for w in txt.split() if w not in stops])
if stemming:
st = PorterStemmer()
txt = " ".join([st.stem(w) for w in txt.split()])
if lemm:
wordnet_lemmatizer = WordNetLemmatizer()
txt = " ".join([wordnet_lemmatizer.lemmatize(w) for w in txt.split()])
return txt
Are there any more pre-processing steps to be done to get a better accuracy.?
URL for the dataset : Dataset
EDIT :
Parameters that I used are as mentioned below.
params = {'task': 'train',
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'binary_logloss',
'learning_rate': 0.01,
'max_depth': 22,
'num_leaves': 78,
'feature_fraction': 0.1,
'bagging_fraction': 0.4,
'bagging_freq': 1}
I have altered the depth
and num_leaves
parameters along with others. But the accuracy is kind of stuck at a certain level..
There are a few things to consider. First of all your training set is not balanced - the class distribution is ~ 70%/30%. You need to consider this fact in training. What types of features are you using? Using the right set of features could improve your performance.