I am making a generic N-bit ALU in VHDL. I am having trouble assigning the value for the carry for addition, or borrow for subtraction. I have tried the following:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity alu is
generic(n: integer :=1); --Default to 1
port (
a : in std_logic_vector(n-1 downto 0);
b : in std_logic_vector(n-1 downto 0);
op : in std_logic_vector(1 downto 0);
output : out std_logic_vector(n-1 downto 0);
carryborrow: out std_logic
);
end alu;
architecture Behavioral of alu is
signal result: std_logic_vector(n downto 0);
begin
process( a, b, op )
begin
case op is
when "00" =>
result(n) <= '0';
result(n-1 downto 0) <= a and b; --and gate
output <= result(n-1 downto 0);
carryborrow <= '0';
when "01" =>
result(n) <= '0';
result(n-1 downto 0) <= a or b; --or gate
output <= result(n-1 downto 0);
carryborrow <= '0';
when "10" =>
result(n) <= '0';
result(n-1 downto 0) <= std_logic_vector(signed(a) + signed(b)); --addition
output <= result(n-1 downto 0);
carryborrow <= result(n);
when "11" =>
result(n) <= '0';
result(n-1 downto 0) <= std_logic_vector(signed(a) - signed(b)); --subtraction
output <= result(n-1 downto 0);
carryborrow <= result(n);
when others =>
NULL;
end case;
end process;
end Behavioral;
This seems to set the carryborrow
bit to always be 0. How can I assign it to what it should be without type errors?
There are bugs in your code:
i) You have not taken into account the fact that signals are not updated immediately. Consequently, the following lines will not do as I think you are expecting:
result(n) <= '0';
result(n-1 downto 0) <= a and b; --and gate
output <= result(n-1 downto 0);
Instead, you need to take the lines driving output
and carryborrow
outside the combinational process, as you can see below.
ii) Assuming you wish this code to be synthesisable, simply putting NULL
in your always branch will result in latches being inferred. You need to drive result
in the others branch, too.
So, making an assumption about how your carry output is to behave with the and
and or
operations, this is how I would have written your code:
architecture Behavioral of alu is
signal result: std_logic_vector(n downto 0);
begin
process( a, b, op )
begin
case op is
when "00" =>
result <= '0' & (a and b); --and gate
when "01" =>
result <= '0' & (a or b); --or gate
when "10" =>
result <= std_logic_vector(resize(signed(a), n+1) + resize(signed(b), n+1)); --addition
when "11" =>
result <= std_logic_vector(resize(signed(a), n+1) - resize(signed(b), n+1)); --subtraction
when others =>
result <= (others => 'X');
end case;
end process;
output <= result(n-1 downto 0);
carryborrow <= result(n);
end Behavioral;