I have a list like this:
lst = [0, 1, 0, 5, 0, 1]
I want to generate an adjacency matrix:
out =
array([[ 1., 0., 1., 0., 1., 0.],
[ 0., 1., 0., 0., 0., 1.],
[ 1., 0., 1., 0., 1., 0.],
[ 0., 0., 0., 1., 0., 0.],
[ 1., 0., 1., 0., 1., 0.],
[ 0., 1., 0., 0., 0., 1.]])
where out[i,j] = 1 if lst[i]==lst[j]
Here is my code with two for loops:
lst = np.array(lst)
label_lst = list(set(lst))
out = np.eye(lst.size, dtype=np.float32)
for label in label_lst:
idx = np.where(lst == label)[0]
for pair in itertools.combinations(idx,2):
out[pair[0],pair[1]] = 1
out[pair[1],pair[0]] = 1
But I feel there should be a way to improve this. Any suggestion?
Use broadcasted comparison
-
np.equal.outer(lst, lst).astype(int) # or convert to float
Sample run -
In [787]: lst = [0, 1, 0, 5, 0, 1]
In [788]: np.equal.outer(lst, lst).astype(int)
Out[788]:
array([[1, 0, 1, 0, 1, 0],
[0, 1, 0, 0, 0, 1],
[1, 0, 1, 0, 1, 0],
[0, 0, 0, 1, 0, 0],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 0, 0, 1]])
Or convert to array and then manually extend to 2D
and compare -
In [793]: a = np.asarray(lst)
In [794]: (a[:,None]==a).astype(int)
Out[794]:
array([[1, 0, 1, 0, 1, 0],
[0, 1, 0, 0, 0, 1],
[1, 0, 1, 0, 1, 0],
[0, 0, 0, 1, 0, 0],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 0, 0, 1]])