Search code examples
rcountpaneltidyr

identify series of consecutive numbers within id and segment


I have a panel,dfL, where I am trying to identify series consecutive numbers within id, id, and segment, shift in the variables PM. I am looking for series consecutive numbers that contain the numbers -1 and 1 and has the length of 4 or more.

Below my illustration of the situation with data,

# install.packages(c("tidyverse"), dependencies = TRUE)
library(tibble)

I initially have the data in wide format like this,

dfa <- tibble(id = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
                     1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7),
              PM01 = c(NA, -3, NA, -2, -1, 1, 2, NA, NA, -2, -1, NA, -3, -2, -1,
                       1, 2, 3, NA, NA, -2, -1, 1, 2, 3, NA, NA, NA, NA, NA),
              PM02 = c(1, -2, NA, NA, NA, -3, -2, -1, NA, 1, 2, NA, NA, NA, NA,
                       NA, NA, NA, NA, NA, NA, NA, -1, 1, 2, NA, NA, NA, NA, NA),
              PM03 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
                       NA, NA, NA, NA, NA, NA, NA, -3, -2, -1, 1, 2, 3, NA, NA)
               );dfa
#> # A tibble: 30 x 4
#>       id  PM01  PM02  PM03
#>    <dbl> <dbl> <dbl> <dbl>
#>  1     0    NA     1    NA
#>  2     0    -3    -2    NA
#>  3     0    NA    NA    NA
#>  4     0    -2    NA    NA
#>  5     0    -1    NA    NA
#>  6     0     1    -3    NA
#>  7     0     2    -2    NA
#>  8     0    NA    -1    NA
#>  9     0    NA    NA    NA
#> 10     0    -2     1    NA
#> # ... with 20 more rows

In this this PM01 row 4-7 would be a match.

I've tidyr::gather the data to long to only have one vector I have to look through. Like this,

# install.packages(c("tidyverse"), dependencies = TRUE)
library(tidyr)
dfL <- dfa  %>% select(id, PM01:PM03) %>% gather(shift, PM, PM01:PM03, na.rm = FALSE) %>% arrange(id, shift)  %>% group_by(id, shift)

I tried explaining what I am looking for, but found out it might be clearer if I simply show my desired outcome. Like this,

cbind(dfL, TF = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, 
TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE))
# A tibble: 90 x 4
# Groups:   id, shift [9]
      id shift    PM    TF
   <dbl> <chr> <dbl> <lgl>
 1     0  PM01    NA FALSE
 2     0  PM01    -3 FALSE
 3     0  PM01    NA FALSE
 4     0  PM01    -2 FALSE
 5     0  PM01    -1 FALSE
 6     0  PM01     1 FALSE
 7     0  PM01    NA FALSE
 8     0  PM01    NA FALSE
 9     0  PM01    NA FALSE
10     0  PM01    -2 FALSE
# ... with 80 more rows

Solution

  • Regardless of efficiency, you might do this; Starting from dfL, create a new group variable that identify consecutive NA or non-NAs chunks, and then add the condition column by checking the conditions within each chunk:

    dfL %>% 
        group_by(g = cumsum(is.na(PM) != lag(is.na(PM), default=0)), add=T) %>% 
        mutate(TF = n() >= 4 && all(c(-1,1) %in% PM)) %>% 
        ungroup() %>% select(-g)
    
    # A tibble: 90 x 4
    #      id shift    PM    TF
    #   <dbl> <chr> <dbl> <lgl>
    # 1     0  PM01    NA FALSE
    # 2     0  PM01    -3 FALSE
    # 3     0  PM01    NA FALSE
    # 4     0  PM01    -2  TRUE
    # 5     0  PM01    -1  TRUE
    # 6     0  PM01     1  TRUE
    # 7     0  PM01     2  TRUE
    # 8     0  PM01    NA FALSE
    # 9     0  PM01    NA FALSE
    #10     0  PM01    -2 FALSE
    # ... with 80 more rows