Since the extended versions of constexpr
(I think from C++14) you can declare constexpr
functions that could be used as "real" constexpr
. That is, the code is executed at compile time or can behave as inline functions. So when can have this program:
#include <iostream>
constexpr int foo(const int s) {
return s + 4;
}
int main()
{
std::cout << foo(3) << std::endl;
const int bar = 3;
std::cout << foo(bar) << std::endl;
constexpr int a = 3;
std::cout << foo(a) << std::endl;
return 0;
}
The result is:
7
7
7
So far so good.
Is there a way (possibly standard) to know inside foo(const int s)
if the function is executed at compile time or at runtime?
EDIT: Also is it possible to know at runtime if a function was evaluated at compile time?
The technique listed works, but since it uses static_assert
it is not sfinae friendly. A better way (in theory, you'll see what I mean) to do this is to check whether a function is noexcept
. Why? Because, constant expressions are always noexcept, even if the functions are not marked as such. So, consider the following code:
template <class T>
constexpr void test_helper(T&&) {}
#define IS_CONSTEXPR(...) noexcept(test_helper(__VA_ARGS__))
test_helper
is constexpr
, so it will be a constant expression as long as its argument is. If it's a constant expression, it will be noexcept
, but otherwise it won't be (since it isn't marked as such).
So now let's define this:
double bar(double x) { return x; }
constexpr double foo(double x, bool b) {
if (b) return x;
else return bar(x);
}
foo
is only noexcept
if the x
is a constant expression, and b
is true; if the boolean is false then we call a non constexpr
function, ruining our constexpr-ness. So, let's test this:
double d = 0.0;
constexpr auto x = IS_CONSTEXPR(foo(3.0, true));
constexpr auto y = IS_CONSTEXPR(foo(3.0, false));
constexpr auto z = IS_CONSTEXPR(foo(d, true));
std::cerr << x << y << z;
It compiles, great! This gives us compile time booleans (not compile failures), which can be used for sfinae, for example.
The catch? Well, clang has a multi-year bug, and doesn't handle this correctly. gcc however, does. Live example: http://coliru.stacked-crooked.com/a/e7b037932c358149. It prints "100", as it should.