Search code examples
pythontensorflowautoencodertflearnimage-generation

Trying to adapt tflearn code, shape error


i'm trying to adapt this simple autoencoder code: https://github.com/tflearn/tflearn/blob/master/examples/images/autoencoder.py . I'm trying to change the code in a way that it uses convolutional layers and have a input of 488 images * 30 height * 30 width * 3 color channels(RGB) [488, 30, 30, 3] and output a new image that look similar but different from the original. I'm not using any sort of validation dataset (i don't care about overfitting and i don't see any other reason for using a validation dataset other than helping to prevent overfitting. I may be completely wrong, i would like to know if that is the case). I'm a newbie, sorry about the poorly built encoder and decoder.

# Data loading and preprocessing
from reading import *
X = getDataColor() #A function that read my img data
total_samples = len(X)
np.random.seed(42) # For debugging and visualization purposes
X = np.reshape(X, newshape=[total_samples, 30, 30, 3]) 
X = X.astype('float32') / 255. #For scaling

# Building the encoder
encoder = tflearn.input_data(shape=[None, 30, 30, 3])
encoder = tflearn.conv_2d(encoder,16, 3, activation='relu', padding='same', regularizer='L2')
encoder = tflearn.max_pool_2d(encoder,[2,2], padding='same')
encoder = tflearn.conv_2d(encoder,8, [3,3], activation='relu', padding='same')
encoder = tflearn.max_pool_2d(encoder,[2,2], padding='same')
encoder = tflearn.conv_2d(encoder,8, [3,3], activation='relu', padding='same')
encoder = tflearn.max_pool_2d(encoder,[2,2], padding='same')


# Building the decoder
decoder = tflearn.conv_2d(encoder,8, [3,3], activation='relu', padding='same')
decoder = tflearn.upsample_2d(decoder,[2,2])
decoder = tflearn.conv_2d(decoder,8, [3,3], activation='relu', padding='same')
decoder = tflearn.upsample_2d(decoder,[2,2])
decoder = tflearn.conv_2d(decoder,16, [3,3], activation='relu', padding='same')
decoder = tflearn.upsample_2d(decoder,[2,2])
decoder = tflearn.conv_2d(decoder,1, [3,3], activation='relu', padding='same')

# Regression, with mean square error
net = tflearn.regression(decoder, optimizer='adam', learning_rate=0.001,
                         loss='mean_square', metric=None)



# Training the auto encoder
model = tflearn.DNN(net, tensorboard_verbose=0)


gen_noise = np.random.uniform(-1, 1., size=[total_samples, 30, 30, 3])
#I'm trying to generate images based on this noise
#I couldn't think of any other way...
model.fit(gen_noise, X, n_epoch =10000,
              run_id="auto_encoder", batch_size=total_samples)

When trying to run the complete code i get the error:

Log directory: /tmp/tflearn_logs/
---------------------------------
Training samples: 488
Validation samples: 0
--
Traceback (most recent call last):
  File "autoCNN.py", line 66, in <module>
    run_id="auto_encoder", batch_size=total_samples)
  File "F:\Users\Kai\Miniconda3\lib\site-packages\tflearn\models\dnn.py", line 216, in fit
    callbacks=callbacks)
  File "F:\Users\Kai\Miniconda3\lib\site-packages\tflearn\helpers\trainer.py", line 339, in fit
    show_metric)
  File "F:\Users\Kai\Miniconda3\lib\site-packages\tflearn\helpers\trainer.py", line 818, in _train
    feed_batch)
  File "F:\Users\Kai\Miniconda3\lib\site-packages\tensorflow\python\client\session.py", line 789, in run
    run_metadata_ptr)
  File "F:\Users\Kai\Miniconda3\lib\site-packages\tensorflow\python\client\session.py", line 975, in _run
    % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (488, 30, 30, 3) for Tensor 'TargetsData/Y:0', which has shape '(?, 32, 32, 1)'

Why does the 'TargetsData/Y:0' have shape (?, 32, 32, 1) and how could i solve it?


Solution

  • Your dimensions are not right, this is what you have:

    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d_1 (Conv2D)            (None, 30, 30, 16)        448       
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 15, 15, 16)        0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 15, 15, 8)         1160      
    _________________________________________________________________
    max_pooling2d_2 (MaxPooling2 (None, 8, 8, 8)           0         
    _________________________________________________________________
    conv2d_3 (Conv2D)            (None, 8, 8, 8)           584       
    _________________________________________________________________
    max_pooling2d_3 (MaxPooling2 (None, 4, 4, 8)           0         
    _________________________________________________________________
    conv2d_4 (Conv2D)            (None, 4, 4, 8)           584       
    _________________________________________________________________
    up_sampling2d_1 (UpSampling2 (None, 8, 8, 8)           0         
    _________________________________________________________________
    conv2d_5 (Conv2D)            (None, 8, 8, 8)           584       
    _________________________________________________________________
    up_sampling2d_2 (UpSampling2 (None, 16, 16, 8)         0         
    _________________________________________________________________
    conv2d_6 (Conv2D)            (None, 16, 16, 16)        1168      
    _________________________________________________________________
    up_sampling2d_3 (UpSampling2 (None, 32, 32, 16)        0         
    _________________________________________________________________
    conv2d_7 (Conv2D)            (None, 32, 32, 1)         145       
    =================================================================
    

    An easy fix to match (None, 30, 30, 3) is to change the last conv_2d to have 3 convolutional filters to match the last dimension and a "valid" padding so it is 30 instead of 32. Like this:

    decoder = tflearn.conv_2d(decoder,3, [3,3], activation='relu', padding='valid')