Search code examples
pythonmachine-learningscikit-learntext-classificationfeature-selection

Information Gain calculation with Scikit-learn


I am using Scikit-learn for text classification. I want to calculate the Information Gain for each attribute with respect to a class in a (sparse) document-term matrix.

  • the Information Gain is defined as H(Class) - H(Class | Attribute), where H is the entropy.
  • in weka, this would be calculated with InfoGainAttribute.
  • But I haven't found this measure in scikit-learn.

(It was suggested that the formula above for Information Gain is the same measure as mutual information. This matches also the definition in wikipedia. Is it possible to use a specific setting for mutual information in scikit-learn to accomplish this task?)


Solution

  • You can use scikit-learn's mutual_info_classif here is an example

    from sklearn.datasets import fetch_20newsgroups
    from sklearn.feature_selection import mutual_info_classif
    from sklearn.feature_extraction.text import CountVectorizer
    
    categories = ['talk.religion.misc',
                  'comp.graphics', 'sci.space']
    newsgroups_train = fetch_20newsgroups(subset='train',
                                          categories=categories)
    
    X, Y = newsgroups_train.data, newsgroups_train.target
    cv = CountVectorizer(max_df=0.95, min_df=2,
                                         max_features=10000,
                                         stop_words='english')
    X_vec = cv.fit_transform(X)
    
    res = dict(zip(cv.get_feature_names(),
                   mutual_info_classif(X_vec, Y, discrete_features=True)
                   ))
    print(res)
    

    this will output a dictionary of each attribute, i.e. item in the vocabulary as keys and their information gain as values

    here is a sample of the output

    {'bible': 0.072327479595571439,
     'christ': 0.057293733680219089,
     'christian': 0.12862867565281702,
     'christians': 0.068511328611810071,
     'file': 0.048056478042481157,
     'god': 0.12252523919766867,
     'gov': 0.053547274485785577,
     'graphics': 0.13044709565039875,
     'jesus': 0.09245436105573257,
     'launch': 0.059882179387444862,
     'moon': 0.064977781072557236,
     'morality': 0.050235104394123153,
     'nasa': 0.11146392824624819,
     'orbit': 0.087254803670582998,
     'people': 0.068118370234354936,
     'prb': 0.049176995204404481,
     'religion': 0.067695617096125316,
     'shuttle': 0.053440976618359261,
     'space': 0.20115901737978983,
     'thanks': 0.060202010019767334}