from sanic import Sanic
from sanic import response
app = Sanic(__name__)
@app.route('/v1/ok', methods=['GET'])
async def post_handler(request):
return response.text("hey all good")
if __name__ == '__main__':
app.run(host="0.0.0.0", port=8001, debug=True)
I am trying to write REST APIs in python using sanic
Here are my conclusions:
I tried benchmarking this GET API using wrk with 50 threads running 30s test. Machine used AWS EC2 t2.medium which has 4GB RAM and 2 CPU command used
wrk -t50 -c4000 -d30s http://XXX.XX.XXX.XXX:8001/v1/ok
benchmarking result
Running 30s test @ http://XXX.XX.XXX.XXX:8001/v1/ok
50 threads and 4000 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 559.30ms 117.86ms 1.99s 94.47%
Req/Sec 41.92 44.33 361.00 86.14%
53260 requests in 30.10s, 6.70MB read
Socket errors: connect 1493, read 15631, write 0, timeout 4
Requests/sec: 1769.21
Transfer/sec: 228.06KB
My doubt is that, how could i improve on
In the case of POST request, it is very very bad, wherein I am trying to load a keras model and do the predictions.
Is it a problem in a way the code is written?
OR
Is this a limitation of Sanic?
Should I try another REST framework?
P.S: My experience with flask is even worse in terms of latency and timed out requests.
import sys
import os
import json
import pandas
import numpy
import optparse
from keras.models import Sequential, load_model
from keras.preprocessing import sequence
from keras.preprocessing.text import Tokenizer
from collections import OrderedDict
from sanic import Sanic
from sanic import response
import time
app = Sanic(__name__)
@app.route('/v1/mal/prediction', methods=['POST'])
async def post_handler(request):
csv_file = 'alerts.csv'
log_entry = request.json
dataframe = pandas.read_csv(csv_file, engine='python', quotechar='|', header=None)
dataset = dataframe.values
X = dataset[:,0]
for index, item in enumerate(X):
reqJson = json.loads(item, object_pairs_hook=OrderedDict)
del reqJson['timestamp']
del reqJson['headers']
del reqJson['source']
del reqJson['route']
del reqJson['responsePayload']
X[index] = json.dumps(reqJson, separators=(',', ':'))
tokenizer = Tokenizer(filters='\t\n', char_level=True)
tokenizer.fit_on_texts(X)
seq = tokenizer.texts_to_sequences([log_entry])
max_log_length = 1024
log_entry_processed = sequence.pad_sequences(seq, maxlen=max_log_length)
model = load_model('model.h5')
model.load_weights('weights.h5')
model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
prediction = model.predict(log_entry_processed)
return response.text(prediction[0])
if __name__ == '__main__':
app.run(host="0.0.0.0", port=8000, debug=True)
Please suggest better ways to improve the API response time and decreasing the timed out requests?
Disable debug
and set workers
to the number of CPU's in your instance (2 for t2.med):
app.run(host="0.0.0.0", port=8001, workers=2)