I have a Pandas Series, s, and spliced it::
print(s)
A {B, A}
B {B, A , E}
C {B, C}
D {D, A}
E {B, E, C}
dtype: object
f = s.index
p = s.values
f is now a Pandas Index; p is a numpy array. I then strip the whitespaces.
I now want to 'cross-check', see which letters are in each row and column::
cross_check = (p[:, None] & [{x} for x in f]).astype(bool)
print(cross_check)
array([[ True, True, False, False, False],
[ True, True, False, False, True],
[False, True, True, False, False],
[ True, False, False, True, False],
[False, True, True, False, True]], dtype=bool)
This is great, but fails if the case doesn't match i.e. "B" is 'b' in the first row.
How do I perform the logic and be case-insensitive?? Thanks!!
You can use list comprehension for convert set
s to upper
with strip
:
s = pd.Series([set(['B','A']),
set(['B', ' a ', 'E']),
set(['B',' C']),
set(['d','A']),
set(['B','E', ' c'])], index=list('aBCDE'))
print (s)
a {B, A}
B {B, E, a }
C { C, B}
D {d, A}
E { c, B, E}
f = s.index.str.upper().str.strip()
p = np.array([set([x.upper().strip() for x in item]) for item in s.values])
print (p)
[{'B', 'A'} {'B', 'E', 'A'} {'B', 'C'} {'D', 'A'} {'B', 'E', 'C'}]
cross_check = (p[:, None] & [{x} for x in f]).astype(bool)
print (cross_check)
[[ True True False False False]
[ True True False False True]
[False True True False False]
[ True False False True False]
[False True True False True]]
For me Zero
solution working nice too:
p = s.apply(lambda x: {v.strip().upper() for v in x})
print (p)
A {B, A}
B {B, E, A}
C {B, C}
D {D, A}
E {B, E, C}
dtype: object