I have a binary classification problem that I'm trying to tackle in tensorflow. I'm using a simple multi layer perceptron. I'm trying to understand the confusion matrix I am getting. A sample output is:
Epoch: 0001 cost=882.103631592
Epoch: 0002 cost=496.739675903
Epoch: 0003 cost=403.711282349
Epoch: 0004 cost=389.798379517
Epoch: 0005 cost=324.857388306
Optimization Finished!
Accuracy: 0.889306
CM=
[[797 260]
[ 0 1071]]
The labels are AWAKE and NOT_AWAKE. It looks like from doing a one-hot encoding, I have [1,0] as AWAKE and [0,1] as NOT_AWAKE (I just save the array to a file and visually inspect).
How do I interpret the confusion matrix ?
I believe this output:
CM=
[[797 260]
[ 0 1071]]
May be interpreted as:
Pred: 0 | Pred: 1
Actual 0: 797 | 260
Actual 1: 0 | 1071
Does [1,0] (one hot encoding for AWAKE) become row 1 in the confusion matrix? Most of the code to run the mlp is below.
# Parameters
learning_rate = 0.00001
training_epochs = 4
display_step = 1
keep_prob_training = 0.75
# Network Parameters
n_hidden_1 = 2048 # 1st layer number of neurons
n_hidden_2 = 2048 # 2nd layer number of neurons
n_input = 9 # channels
n_classes = 2 # total classes
print( "Some hyper params: training_epochs = %s,learning_rate = %f,keep_prob_training = %s, n_hidden_1 = %s,n_hidden_2 = %s" % ( training_epochs, learning_rate, keep_prob_training, n_hidden_1, n_hidden_2 ) )
print ( "Misc shape info: X_train.shape = %s, X_test.shape = %s, y_train.shape = %s, y_test.shape = %s" % ( np.shape( X_train ), np.shape( X_test ), np.shape( y_train ), np.shape( y_test ) ) )
# tf Graph input
X = tf.placeholder( "float", [None, n_input] )
Y = tf.placeholder( "float", [None, n_classes] )
keep_prob = tf.placeholder( tf.float32 )
# placeholder for confusion matrix
y_ = tf.placeholder( tf.float32, shape = [None, 2] )
# Store layers weight & bias
weights = {
'h1': tf.Variable( tf.random_normal( [n_input, n_hidden_1] ) ),
'h2': tf.Variable( tf.random_normal( [n_hidden_1, n_hidden_2] ) ),
'out': tf.Variable( tf.random_normal( [n_hidden_2, n_classes] ) )
}
biases = {
'b1': tf.Variable( tf.random_normal( [n_hidden_1] ) ),
'b2': tf.Variable( tf.random_normal( [n_hidden_2] ) ),
'out': tf.Variable( tf.random_normal( [n_classes] ) )
}
# Create model
def multilayer_perceptron( x ):
# Hidden fully connected layer
layer_1 = tf.add( tf.matmul( x, weights['h1'] ), biases['b1'] )
layer_1 = tf.nn.relu( layer_1 )
# apply DropOut to hidden layer
drop_out_1 = tf.nn.dropout( layer_1, keep_prob )
# Hidden fully connected layer
layer_2 = tf.add( tf.matmul( drop_out_1, weights['h2'] ), biases['b2'] )
layer_2 = tf.nn.relu( layer_2 )
drop_out_2 = tf.nn.dropout( layer_2, keep_prob )
# Output fully connected layer with a neuron for each class
out_layer = tf.matmul( drop_out_2, weights['out'] ) + biases['out']
return out_layer
# Construct model
logits = multilayer_perceptron( X )
# obtain cm after training
confusion_matrix_tf = tf.confusion_matrix( tf.argmax( logits, 1 ), tf.argmax( y_, 1 ) )
# Define loss and optimizer
loss_op = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits = logits, labels = Y ) )
optimizer = tf.train.AdamOptimizer( learning_rate )
train_op = optimizer.minimize( loss_op )
# Initializing the variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run( init )
# Training cycle
for epoch in range( training_epochs ):
avg_cost = 0.
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run( [train_op, loss_op], feed_dict = {X: X_train, Y: y_train, keep_prob : keep_prob_training} )
# Compute average loss
# Display logs per epoch step
if epoch % display_step == 0:
print( "Epoch:", '%04d' % ( epoch + 1 ) , "cost={:.9f}".format( c ) )
print( "Optimization Finished!" )
# Test model
pred = tf.nn.softmax( logits ) # Apply softmax to logits
correct_prediction = tf.equal( tf.argmax( pred, 1 ), tf.argmax( Y, 1 ) )
# Calculate accuracy
accuracy = tf.reduce_mean( tf.cast( correct_prediction, "float" ) )
print( "Accuracy:", accuracy.eval( {X: X_test, Y: y_test, keep_prob : 1.0} ) )
cm = confusion_matrix_tf.eval( feed_dict = {X: X_train, y_: y_train, keep_prob: 1.0} )
print( "CM=\n", cm )
Here is how I encode my labels:
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform( df_combined['Label'] )
# binary encode
onehot_encoder = OneHotEncoder( sparse = False )
integer_encoded = integer_encoded.reshape( len( integer_encoded ), 1 )
all_y = onehot_encoder.fit_transform( integer_encoded )
Regarding the Tensorflow confusion matrix, your assumption on how it is interpreted is correct.
For example:
number of classes = 2
Predicted labels = [0, 1, 1, 1, 0, 0, 0, 0, 1, 1]
Actual labels = [0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
So your Tensorflow confusion matrix will be:
Pred: 0 | Pred: 1
Actual 0: 1 | 2
Actual 1: 4 | 3
Next, on is AWAKE interpreted as [0, 1] or [1, 0] depends upon what label have you assigned to AWAKE before you did one-hot encoding on it (You have not enclosed that part of code). For example, if you had assigned AWAKE as 0 and since there are only two classes totally, one-hot encoding will give you [1, 0].
Hope this answer helps you!