Search code examples
pythonmachine-learningscikit-learngrid-searchhyperparameters

Hyperparameter in Voting classifier


So, I have a classifier which looks like

clf = VotingClassifier(estimators=[ 
        ('nn', MLPClassifier()), 
        ('gboost', GradientBoostingClassifier()),
        ('lr', LogisticRegression()),

        ], voting='soft')

And I want to essentially tune the hyperparameters of each of the estimators.

Is there a way to tune these "combinations" of classifiers? Thanks


Solution

  • You can do this using GridSearchCV but with a little modification. In the parameters dictionary instead of specifying the attrbute directly, you need to use the key for classfier in the VotingClassfier object followed by __ and then the attribute itself.

    Check out this example

    from sklearn.linear_model import LogisticRegression
    from sklearn.svm import SVC
    from sklearn.ensemble import VotingClassifier
    from sklearn.model_selection import GridSearchCV
    
    X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2],[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
    y = np.array([1, 1, 2, 2,1, 1, 2, 2])
    
    eclf = VotingClassifier(estimators=[ 
        ('svm', SVC(probability=True)),
        ('lr', LogisticRegression()),
        ], voting='soft')
    
    #Use the key for the classifier followed by __ and the attribute
    params = {'lr__C': [1.0, 100.0],
          'svm__C': [2,3,4],}
    
    grid = GridSearchCV(estimator=eclf, param_grid=params, cv=2)
    
    grid.fit(X,y)
    
    print (grid.best_params_)
    #{'lr__C': 1.0, 'svm__C': 2}