I'm currently reimplement my TensorFlow implementation of Jonathan Longs FCN8-s using CNTK. While TensorFlow is meanwhile very familar to me I'm very inexperienced in using Microsofts CNTK yet. I read a few CNTK Github tutorials but now I'm at the point where I want to add pool4_score with the upscore layer. In TensorFlow I would simply use tf.add(pool4_score, upscore1)
but in CNTK I have to use Sequentials (correct?) So my code looks like:
with default_options(activation=None, pad=True, bias=True):
z = Sequential([
For(range(2), lambda i: [
Convolution2D((3,3), 64, pad=True, name='conv1_{}'.format(i)),
Activation(activation=relu, name='relu1_{}'.format(i)),
]),
MaxPooling((2,2), (2,2), name='pool1'),
For(range(2), lambda i: [
Convolution2D((3,3), 128, pad=True, name='conv2_{}'.format(i)),
Activation(activation=relu, name='relu2_{}'.format(i)),
]),
MaxPooling((2,2), (2,2), name='pool2'),
For(range(3), lambda i: [
Convolution2D((3,3), 256, pad=True, name='conv3_{}'.format(i)),
Activation(activation=relu, name='relu3_{}'.format(i)),
]),
MaxPooling((2,2), (2,2), name='pool3'),
For(range(3), lambda i: [
Convolution2D((3,3), 512, pad=True, name='conv4_{}'.format(i)),
Activation(activation=relu, name='relu4_{}'.format(i)),
]),
MaxPooling((2,2), (2,2), name='pool4'),
For(range(3), lambda i: [
Convolution2D((3,3), 512, pad=True, name='conv5_{}'.format(i)),
Activation(activation=relu, name='relu5_{}'.format(i)),
]),
MaxPooling((2,2), (2,2), name='pool5'),
Convolution2D((7,7), 4096, pad=True, name='fc6'),
Activation(activation=relu, name='relu6'),
Dropout(0.5, name='drop6'),
Convolution2D((1,1), 4096, pad=True, name='fc7'),
Activation(activation=relu, name='relu7'),
Dropout(0.5, name='drop7'),
Convolution2D((1,1), num_classes, pad=True, name='fc8')
ConvolutionTranspose2D((4,4), num_classes, strides=(1,2), name='upscore1')
# TODO:
# conv for pool4_score with (1x512) and 21 classes
# combine upscore 1 and pool4_score
])(input)
I read that there is a combine
method .. But I found no examples how to use it within the sequential. So how would I implement the tf.add
method using CNTK?
Thanks a lot!
You can use C.plus or +
, in this case you will need to split your sequence in order to get to the layer that you want to add.
For example the below:
z = Sequential([Convolution2D((3,3), 64, pad=True),
MaxPooling((2,2), (2,2))])(input)
Is equivalent to:
z1 = Convolution2D((3,3), 64, pad=True)(input)
z2 = MaxPooling((2,2), (2,2))(z1)
You can now do z1 + z2.