This is a followup from my previous question,
So given the following data,
> foo
Resp A B C
1 1.629 0.3333333 0.3333333 0.3333333
2 1.734 0.1666667 0.6666667 0.1666667
3 1.957 0.0000000 1.0000000 0.0000000
4 1.778 1.0000000 0.0000000 0.0000000
5 1.682 0.6666667 0.1666667 0.1666667
6 1.407 0.1666667 0.1666667 0.6666667
7 1.589 0.0000000 0.5000000 0.5000000
8 1.251 0.0000000 0.0000000 1.0000000
9 1.774 0.5000000 0.5000000 0.0000000
10 1.940 0.5000000 0.0000000 0.5000000
>
I am trying to reproduce a chart from this article (private access). The article claims to use a special cubic model
However, when I try to use the notation value ~ (x + y + z)^3 -1
, I get
object 'z' not found
Which I assume is because z
is linearly dependent on x
and y
.
When I try to recreate the special cubic model with only x
and y
, I tried using the cubicS
and quad
functions with expand.formula
,
> expand.formula(Resp ~ cubicS(A,B) + quad(A,B))
Resp ~ (A + B)^3 + I(A * B * (A - B)) + (A + B)^2 + I(A^2) + I(B^2)
>
However, geom_interpolate_tern
will say I am using too many predictors,
foo <-
structure(
list(
Resp = c(1.629, 1.734, 1.957, 1.778, 1.682, 1.407,
1.589, 1.251, 1.774, 1.94),
A = c(0.3333333, 0.1666667, 0, 1,
0.6666667, 0.1666667, 0, 0, 0.5, 0.5),
B = c(0.3333333, 0.6666667,
1, 0, 0.1666667, 0.1666667, 0.5, 0, 0.5, 0),
C = c(0.3333333,
0.1666667, 0, 0, 0.1666667, 0.6666667, 0.5, 1, 0, 0.5)
),
.Names = c("Resp",
"A", "B", "C"),
class = "data.frame",
row.names = c("1", "2",
"3", "4", "5", "6", "7", "8", "9", "10")
)
ggtern(data=foo,aes(y = A,x = B,z = C)) +
geom_interpolate_tern(
data = foo,
mapping = aes(
value = Resp,color=..level..
),
formula = expand.formula(value ~ cubicS(x,y) + quad(x,y)),
base = "identity"
)
Output:
Warning messages:
1: In structure(c(), class = c(class(x), class(y))) :
Calling 'structure(NULL, *)' is deprecated, as NULL cannot have attributes.
Consider 'structure(list(), *)' instead.
2: Computation failed in `stat_interpolate_tern()`:
only 1-4 predictors are allowed
By default, the interpolation method is 'loess', to maintain consistent with the default smoothing method in ggplot2
for things like geom_smooth(...)
. This error is being thrown, due to the predictors limit for loess regression.
No matter, this is easily fixed, specify method = lm
instead. I have added coloured points to see how the model fits with respect to your data.
ggtern(data=foo,aes(y = A,x = B,z = C)) +
geom_point(aes(color=Resp)) +
geom_interpolate_tern(
data = foo,
mapping = aes(
value = Resp,color=..level..
),
method=lm, # <<<<<< SPECIFY METHOD HERE <<<<<<<
formula = expand.formula(value ~ cubicS(x,y) + quad(x,y)),
base = "identity"
)