I have data consisting of x,y-coordinates and heading angle that I'd like to divide into 2D bins in order to calculate mean heading for each bin and plot with ggplot
's geom_spoke
.
Here's an example of what I want to do, with bins created manually:
# data
set.seed(1)
dat <- data.frame(x = runif(100,0,100), y = runif(100,0,100), angle = runif(100, 0, 2*pi))
# manual binning
bins <- rbind(
#bottom left
dat %>%
filter(x < 50 & y < 50) %>%
summarise(x = 25, y = 25, angle = mean(angle), n = n()),
#bottom right
dat %>%
filter(x > 50 & y < 50) %>%
summarise(x = 75, y = 25, angle = mean(angle), n = n()),
#top left
dat %>%
filter(x < 50 & y > 50) %>%
summarise(x = 25, y = 75, angle = mean(angle), n = n()),
#top right
dat %>%
filter(x > 50 & y > 50) %>%
summarise(x = 75, y = 75, angle = mean(angle), n = n())
)
# plot
ggplot(bins, aes(x, y)) +
geom_point() +
coord_equal() +
scale_x_continuous(limits = c(0,100)) +
scale_y_continuous(limits = c(0,100)) +
geom_spoke(aes(angle = angle, radius = n/2), arrow=arrow(length = unit(0.2,"cm")))
I know how to create 2D bins containing count data for each bin, e.g.:
# heatmap of x,y counts
p <- ggplot(dat, aes(x, y)) +
geom_bin2d(binwidth = c(50, 50)) +
coord_equal()
#ggplot_build(p)$data[[1]] #access binned data
But I can't seem to find a way to summarise other variables such as heading for each bin before passing to geom_spoke
. Without first binning, my plot looks like this instead:
Here's one approach. You'll need to determine the number / range of bins in each dimension (x & y) once, & everything else should be covered by code:
# adjust range & number of bins here
x.range <- pretty(dat$x, n = 3)
y.range <- pretty(dat$y, n = 3)
> x.range
[1] 0 50 100
> y.range
[1] 0 50 100
Automatically assign each row to a bin based on which x & y intervals it falls into:
dat <- dat %>%
rowwise() %>%
mutate(x.bin = max(which(x > x.range)),
y.bin = max(which(y > y.range)),
bin = paste(x.bin, y.bin, sep = "_")) %>%
ungroup()
> head(dat)
# A tibble: 6 x 6
x y angle x.bin y.bin bin
<dbl> <dbl> <dbl> <int> <int> <chr>
1 26.55087 65.47239 1.680804 1 2 1_2
2 37.21239 35.31973 1.373789 1 1 1_1
3 57.28534 27.02601 3.247130 2 1 2_1
4 90.82078 99.26841 1.689866 2 2 2_2
5 20.16819 63.34933 1.138314 1 2 1_2
6 89.83897 21.32081 3.258310 2 1 2_1
Calculate the mean values for each bin:
dat <- dat %>%
group_by(bin) %>%
mutate(x.mean = mean(x),
y.mean = mean(y),
angle.mean = mean(angle),
n = n()) %>%
ungroup()
> head(dat)
# A tibble: 6 x 10
x y angle x.bin y.bin bin x.mean y.mean angle.mean n
<dbl> <dbl> <dbl> <int> <int> <chr> <dbl> <dbl> <dbl> <int>
1 26.55087 65.47239 1.680804 1 2 1_2 26.66662 68.56461 2.672454 29
2 37.21239 35.31973 1.373789 1 1 1_1 33.05887 28.86027 2.173177 23
3 57.28534 27.02601 3.247130 2 1 2_1 74.71214 24.99131 3.071629 23
4 90.82078 99.26841 1.689866 2 2 2_2 77.05622 77.91031 3.007859 25
5 20.16819 63.34933 1.138314 1 2 1_2 26.66662 68.56461 2.672454 29
6 89.83897 21.32081 3.258310 2 1 2_1 74.71214 24.99131 3.071629 23
Plot without hard-coding any bin number / bin width:
ggplot(dat,
aes(x, y, fill = bin)) +
geom_bin2d(binwidth = c(diff(x.range)[1],
diff(y.range)[1])) +
geom_point(aes(x = x.mean, y = y.mean)) +
geom_spoke(aes(x = x.mean, y = y.mean, angle = angle.mean, radius = n/2),
arrow=arrow(length = unit(0.2,"cm"))) +
coord_equal()
Other details such as the choice of fill palette, legend label, plot title, etc can be tweaked subsequently.