I don't know if the title makes any sense. Normally an identity matrix is a 2D matrix like
In [1]: import numpy as np
In [2]: np.identity(2)
Out[2]:
array([[ 1., 0.],
[ 0., 1.]])
and there's no 3rd dimension.
Numpy can give me 3D matrix with all zeros
In [3]: np.zeros((2,2,3))
Out[3]:
array([[[ 0., 0., 0.],
[ 0., 0., 0.]],
[[ 0., 0., 0.],
[ 0., 0., 0.]]])
But I want a "3D identity matrix" in the sense that all diagonal elements along the first 2 dimensions are 1s. For example, for shape (2,2,3) it should be
array([[[ 1., 1., 1.],
[ 0., 0., 0.]],
[[ 0., 0., 0.],
[ 1., 1., 1.]]])
Is there any elegant way to generate this?
Starting from a 2d identity matrix, here are two options you can make the "3d identity matrix":
import numpy as np
i = np.identity(2)
Option 1: stack the 2d identity matrix along the third dimension
np.dstack([i]*3)
#array([[[ 1., 1., 1.],
# [ 0., 0., 0.]],
# [[ 0., 0., 0.],
# [ 1., 1., 1.]]])
Option 2: repeat values and then reshape
np.repeat(i, 3, axis=1).reshape((2,2,3))
#array([[[ 1., 1., 1.],
# [ 0., 0., 0.]],
# [[ 0., 0., 0.],
# [ 1., 1., 1.]]])
Option 3: Create an array of zeros and assign 1 to positions of diagonal elements (of the 1st and 2nd dimensions) using advanced indexing:
shape = (2,2,3)
identity_3d = np.zeros(shape)
idx = np.arange(shape[0])
identity_3d[idx, idx, :] = 1
identity_3d
#array([[[ 1., 1., 1.],
# [ 0., 0., 0.]],
# [[ 0., 0., 0.],
# [ 1., 1., 1.]]])
Timing:
%%timeit
shape = (100,100,300)
i = np.identity(shape[0])
np.repeat(i, shape[2], axis=1).reshape(shape)
# 10 loops, best of 3: 10.1 ms per loop
%%timeit
shape = (100,100,300)
i = np.identity(shape[0])
np.dstack([i] * shape[2])
# 10 loops, best of 3: 47.2 ms per loop
%%timeit
shape = (100,100,300)
identity_3d = np.zeros(shape)
idx = np.arange(shape[0])
identity_3d[idx, idx, :] = 1
# 100 loops, best of 3: 6.31 ms per loop