Trying to perform ttest (and to get p.value) from a data.frame, there's one column that includes the groups (good vs bad) and the rest of the columns are numeric.
I generated a toy dataset here:
W <- rep(letters[seq( from = 1, to = 2)], 25)
X <- rnorm(n=50, mean = 10, sd = 5)
Y <- rnorm(n=50, mean = 15, sd = 6)
Z <- rnorm(n=50, mean = 20, sd = 5)
test_data <- data.frame(W, X, Y, Z)
Then I transform the data into long format:
melt_testdata <- melt(test_data)
And performed the t.test
lapply(unique(melt_testdata$variable),function(x){
Good <- subset(melt_testdata, W == 'a' & variable ==x)$variable
Bad <- subset(melt_testdata, W == 'b' & variable ==x)$variable
t.test(Good,Bad)$p.value
})
But I instead of getting the t.test results, I got the following error messages:
Error in if (stderr < 10 * .Machine$double.eps * max(abs(mx), abs(my))) stop("data are essentially constant") :
missing value where TRUE/FALSE needed In addition: Warning messages:
1: In mean.default(x) : argument is not numeric or logical: returning NA
2: In var(x) :
Calling var(x) on a factor x is deprecated and will become an error.
Use something like 'all(duplicated(x)[-1L])' to test for a constant vector.
3: In mean.default(y) : argument is not numeric or logical: returning NA
4: In var(y) :
Calling var(x) on a factor x is deprecated and will become an error.
Use something like 'all(duplicated(x)[-1L])' to test for a constant vector.
Then I tried to write loops (first time..)
good <- matrix(,50)
bad <- matrix(,50)
cnt=3
out <- rep(0,cnt)
for (i in 2:4){
good[i] <- subset(test_data, W == 'a', select= test_data[,i])
bad[i] <- subset(test_data, W == 'b', select= test_data[,i])
out[i] <- print(t.test(good[[i]], bad[[i]])$p.value)
}
Still not getting p.values ....... This is the error messages
Error in x[j] : only 0's may be mixed with negative subscripts
I appreciate any help in any method, thanks!
I think you'll have better luck with the formula
method of t.test
. Try
library(broom)
library(magrittr)
library(dplyr)
W <- rep(letters[seq( from = 1, to = 2)], 25)
X <- rnorm(n=50, mean = 10, sd = 5)
Y <- rnorm(n=50, mean = 15, sd = 6)
Z <- rnorm(n=50, mean = 20, sd = 5)
test_data <- data.frame(W, X, Y, Z)
lapply(test_data[c("X", "Y", "Z")],
function(x, y) t.test(x ~ y),
y = test_data[["W"]]) %>%
lapply(tidy) %>%
do.call("rbind", .) %>%
mutate(variable = rownames(.))
With stricter adherence to the dplyr
philosophy, you can use the following: which is actually a bit cleaner looking.
library(broom)
library(dplyr)
library(tidyr)
W <- rep(letters[seq( from = 1, to = 2)], 25)
X <- rnorm(n=50, mean = 10, sd = 5)
Y <- rnorm(n=50, mean = 15, sd = 6)
Z <- rnorm(n=50, mean = 20, sd = 5)
test_data <- data.frame(W, X, Y, Z)
test_data %>%
gather(variable, value, X:Z) %>%
group_by(variable) %>%
do(., tidy(t.test(value ~ W, data = .)))