I am well familiar with Pandas data frame where I use function "mode" and "groupby" to get most frequent values,like below
df3=df5.groupby(['band']).apply(lambda x: x.mode())
however I am facing some difficulties to get in PySpark.
I have a spark data frame as follows:
band A3 A5 status
4G_band1800 12 18 TRUE
4G_band1800 12 18 FALSE
4G_band1800 10 18 TRUE
4G_band1800 12 12 TRUE
4g_band2300 6 24 FALSE
4g_band2300 6 22 FALSE
4g_band2300 6 24 FALSE
4g_band2300 3 24 TRUE
What I want is as follows:
band A3 A5 status
4G_band1800 12 18 TRUE
4g_band2300 6 24 FALSE
I have tried all possible combinations but haven't got any reasonable output. Please suggest a way.
Without defining your own UDAF
, you might define a mode function (udf) and use it with collect_list
as follows:
import pyspark.sql.functions as F
@F.udf
def mode(x):
from collections import Counter
return Counter(x).most_common(1)[0][0]
cols = ['A3', 'A5', 'status']
agg_expr = [mode(F.collect_list(col)).alias(col) for col in cols]
df.groupBy('band').agg(*agg_expr).show()
+-----------+---+---+------+
| band| A3| A5|status|
+-----------+---+---+------+
|4G_band1800| 12| 18| true|
|4g_band2300| 6| 24| false|
+-----------+---+---+------+