I use tflearn.DNN to build a deep neural network:
# Build neural network
net = tflearn.input_data(shape=[None, 5], name='input')
net = tflearn.fully_connected(net, 64, activation='sigmoid')
tflearn.batch_normalization(net)
net = tflearn.fully_connected(net, 32, activation='sigmoid')
tflearn.batch_normalization(net)
net = tflearn.fully_connected(net, 16, activation='sigmoid')
tflearn.batch_normalization(net)
net = tflearn.fully_connected(net, 8, activation='sigmoid')
tflearn.batch_normalization(net)
# activation needs to be softmax for classification.
# default loss is cross-entropy and the default metric is accuracy
# cross-entropy + accuracy = categorical network
net = tflearn.fully_connected(net, 2, activation='softmax')
sgd = tflearn.optimizers.SGD(learning_rate=0.01, lr_decay=0.96, decay_step=100)
net = tflearn.regression(net, optimizer=sgd, loss='categorical_crossentropy')
model = tflearn.DNN(net, tensorboard_verbose=0)
I tried many things, but all the time the total loss is around this value:
Training Step: 95 | total loss: 0.68445 | time: 1.436s
| SGD | epoch: 001 | loss: 0.68445 - acc: 0.5670 | val_loss: 0.68363 - val_acc: 0.5714 -- iter: 9415/9415
What can I do to decrease the total loss and make the accuracy get higher?
Many aspects can be considered to improve the network performance, including the datasets and the network. Just by the network structure you pasted, it is difficult to give a clear way to increase its accuracy without more info about datasets and the target you want to get. But the following are some useful practices may help you to debug / improve the network:
1. About the datasets
2. About the network
And for more deeply analyse, the following articles may be helpful to you: