Search code examples
python-3.xscikit-learnpipelinegrid-search

Error while using scikit-learn Pipeline and GridSearchCV


I want to try different configurations of a pipeline for text classification.

I did this

pipe = Pipeline([('c_vect', CountVectorizer()),('feat_select', SelectKBest()),
                                    ('ridge', RidgeClassifier())])

parameters = {'c_vect__max_features': [10, 50, 100, None], 
                        'feat_select__score_func': [chi2, f_classif, mutual_info_classif, SelectFdr, SelectFwe, SelectFpr], 
                        'ridge__solver': ['sparse_cg', 'lsqr', 'sag'], 'ridge__tol': [1e-2, 1e-3], 'ridge__alpha': [0.01, 0.1, 1]}

gs_clf = GridSearchCV(pipe, parameters, n_jobs=5)
gs_clf = gs_clf.fit(clean_train_data, train_labels_list)

But I get this error, even though SelectFdr is supposed to be one of the available feature selection functions according to the documentation for SelectKBest here: http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html

Traceback (most recent call last):
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.p
y", line 350, in __call__
    return self.func(*args, **kwargs)
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 1
31, in __call__
    return [func(*args, **kwargs) for func, args, kwargs in self.items]
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 1
31, in <listcomp>
    return [func(*args, **kwargs) for func, args, kwargs in self.items]
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/model_selection/_validation.py", line
 437, in _fit_and_score
    estimator.fit(X_train, y_train, **fit_params)
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/pipeline.py", line 257, in fit
    Xt, fit_params = self._fit(X, y, **fit_params)
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/pipeline.py", line 222, in _fit
    **fit_params_steps[name])
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/memory.py", line 362
, in __call__
    return self.func(*args, **kwargs)
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/pipeline.py", line 589, in _fit_trans
form_one
    res = transformer.fit_transform(X, y, **fit_params)
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/base.py", line 521, in fit_transform
    return self.fit(X, y, **fit_params).transform(X)
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/feature_selection/base.py", line 76,
in transform
    mask = self.get_support()
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/feature_selection/base.py", line 47,
in get_support
    mask = self._get_support_mask()
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/feature_selection/univariate_selectio
n.py", line 503, in _get_support_mask
    scores = _clean_nans(self.scores_)
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/feature_selection/univariate_selectio
n.py", line 30, in _clean_nans
    scores = as_float_array(scores, copy=True)
  File ".../anaconda3/lib/python3.5/site-packages/sklearn/utils/validation.py", line 93, in as_
float_array
    return X.astype(return_dtype)
TypeError: float() argument must be a string or a number, not 'SelectFdr'

Any idea why this happens?


Solution

  • SelectFdr, SelectFwe, SelectFpr are classes like SelectKBest. They are not scoring functions.

    The scoring functions available are given in documentation:

    For regression: f_regression, mutual_info_regression
    For classification: chi2, f_classif, mutual_info_classif
    

    And those classes (SelectFdr, SelectFwe, SelectFpr) by default use scoring function f_classif. So you need to remove those from your parameters.

    If you want to use those: you can change the parameter grid like this:

    parameters = {'c_vect__max_features': [10, 50, 100, None],
                  'feat_select':[SelectKBest(), SelectFdr(), SelectFwe(), SelectFdr()]
                  'feat_select__score_func': [chi2, f_classif, mutual_info_classif], 
                  'ridge__solver': ['sparse_cg', 'lsqr', 'sag'], 
                  'ridge__tol': [1e-2, 1e-3], 'ridge__alpha': [0.01, 0.1, 1]}
    

    Notice the new param "feat_select" in there. Yes you can even change the transformer object inside the pipeline when sending into GridSearchCV. Hope this helps. Please ask if any more doubt.