I am trying to summarize some dates by their hour, using SparkR and Spark 2.1.0. My data looks like:
created_at
1 Sun Jul 31 22:25:01 +0000 2016
2 Sun Jul 31 22:25:01 +0000 2016
3 Fri Jun 03 10:16:57 +0000 2016
4 Mon May 30 19:23:55 +0000 2016
5 Sat Jun 11 21:00:07 +0000 2016
6 Tue Jul 12 16:31:46 +0000 2016
7 Sun May 29 19:12:26 +0000 2016
8 Sat Aug 06 11:04:29 +0000 2016
9 Sat Aug 06 11:04:29 +0000 2016
10 Sat Aug 06 11:04:29 +0000 2016
and I want the output to be:
Hour Count
22 2
10 1
19 1
11 3
....
I tried:
sumdf <- summarize(groupBy(df, df$created_at), count = n(df$created_at))
head(select(sumdf, "created_at", "count"),10)
but that groups to the nearest second:
created_at count
1 Sun Jun 12 10:24:54 +0000 2016 1
2 Tue Aug 09 14:12:35 +0000 2016 2
3 Fri Jul 29 19:22:03 +0000 2016 2
4 Mon Jul 25 21:05:05 +0000 2016 2
I tried:
sumdf <- summarize(groupBy(df, hr=hour(df$created_at)), count = n(hour(df$created_at)))
head(select(sumdf, "hour(created_at)", "count"),20)
but that gives:
hour(created_at) count
1 NA 0
I tried:
sumdf <- summarize(groupBy(df, df$created_at), count = n(hour(df$created_at)))
head(select(sumdf, "created_at", "count"),10)
but that gives:
created_at count
1 Sun Jun 12 10:24:54 +0000 2016 0
2 Tue Aug 09 14:12:35 +0000 2016 0
3 Fri Jul 29 19:22:03 +0000 2016 0
4 Mon Jul 25 21:05:05 +0000 2016 0
...
How can I use the hour function to achieve this, or is there a better way?
Assuming your local table is df
, the real problem here is to extract the hour out of your created_at
column and then use your grouping code. To do this, you can use dapply
:
library(SparkR)
sc1 <- sparkR.session()
df2 <- createDataFrame(df)
#with dapply you need to specify the schema i.e. the data.frame that will come out
#of the applied function - i.e. substringDF in our case
schema <- structType(structField('created_at', 'string'), structField('time', 'string'))
#a function that will be applied to each partition of the spark data frame.
#remember that each partition is a data.frame itself.
substringDF <- function(DF) {
DF$time <- substr(DF$created_at, 15, 16)
DF
}
#and then we use the above in dapply
df3 <- dapply(df2, substringDF, schema)
head(df3)
# created_at time
#1 1 Sun Jul 31 22:25:01 +0000 2016 22
#2 2 Sun Jul 31 22:25:01 +0000 2016 22
#3 3 Fri Jun 03 10:16:57 +0000 2016 10
#4 4 Mon May 30 19:23:55 +0000 2016 19
#5 5 Sat Jun 11 21:00:07 +0000 2016 21
#6 6 Tue Jul 12 16:31:46 +0000 2016 16
Then just apply your normal grouping code:
sumdf <- summarize(groupBy(df3, df3$time), count = n(df3$time))
head(select(sumdf, "time", "count"))
# time count
#1 11 3
#2 22 2
#3 16 1
#4 19 2
#5 10 1
#6 21 1