When integrating an ode with scipy, ode accepts a function with more arguments than t and y. For example:
def fun(t, y, param1, param2):
and the value of these arguments can be set using set_f_params
method.
However, when using also set_solout
method and trying to update the params with set_f_params
inside this function, the integration remains the same as if the params were not being modified.
How would you modify the the params using sol_out? I would like to benefit from dopri5 dense output, but I need the non-homogeneous terms to be updated at every time step.
A minimal example is shown below.
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import ode
def fun(t, x, param):
return x - param
def f_param(t):
return t
ode1 = ode(fun).set_integrator('dopri5').set_initial_value([10.0])
ode1.set_f_params(f_param(0))
results1 = ([], [])
ode2 = ode(fun).set_integrator('dopri5').set_initial_value([10.0])
ode2.set_f_params(f_param(0))
results2 = ([], [])
def callback1(t, x):
results1[0].append(t)
results1[1].append(x.copy())
def callback2(t, x):
results2[0].append(t)
results2[1].append(x.copy())
ode2.set_f_params(f_param(t))
ode1.set_solout(callback1)
ode2.set_solout(callback2)
ode1.integrate(3)
ode2.integrate(3)
plt.plot(results1[0], results1[1], 'o-', alpha=0.7, label='ode1')
plt.plot(results2[0], results2[1], '.--', label='ode2')
plt.legend()
and the results are shown here:
This is how one would do it with the new ODE solvers to be released in SciPy 1.0:
from functools import partial
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
def fun_fixed(t, x, param):
return x - param
sol_fixed = solve_ivp(
partial(fun_fixed, param=0), (0, 3), [10.0], dense_output=True)
def fun_param(t, x, fun):
return -x + fun(t)
def f_param(t):
return t
sol_param = solve_ivp(
partial(fun_param, fun=f_param), (0, 3), [10.0], dense_output=True)
t = np.linspace(0, 3, num=16)
plt.figure(figsize=(8, 5))
plt.plot(t, sol_fixed.sol(t)[0], 'o-', alpha=0.7, label='ode1')
plt.plot(t, sol_param.sol(t)[0], 's-.', label='ode3')
plt.legend()